Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Soft Matter ; 16(35): 8272-8283, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32935715

RESUMO

Fibrin is the major extracellular component of blood clots and a proteinaceous hydrogel used as a versatile biomaterial. Fibrin forms branched networks built of laterally associated double-stranded protofibrils. This multiscale hierarchical structure is crucial for the extraordinary mechanical resilience of blood clots, yet the structural basis of clot mechanical properties remains largely unclear due, in part, to the unresolved molecular packing of fibrin fibers. Here the packing structure of fibrin fibers is quantitatively assessed by combining Small Angle X-ray Scattering (SAXS) measurements of fibrin reconstituted under a wide range of conditions with computational molecular modeling of fibrin protofibrils. The number, positions, and intensities of the Bragg peaks observed in the SAXS experiments were reproduced computationally based on the all-atom molecular structure of reconstructed fibrin protofibrils. Specifically, the model correctly predicts the intensities of the reflections of the 22.5 nm axial repeat, corresponding to the half-staggered longitudinal arrangement of fibrin molecules. In addition, the SAXS measurements showed that protofibrils within fibrin fibers have a partially ordered lateral arrangement with a characteristic transverse repeat distance of 13 nm, irrespective of the fiber thickness. These findings provide fundamental insights into the molecular structure of fibrin clots that underlies their biological and physical properties.


Assuntos
Fibrina , Fibrinogênio , Estrutura Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
2.
Biophys J ; 116(10): 1994-2008, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31053262

RESUMO

Contact guidance-the widely known phenomenon of cell alignment induced by anisotropic environmental features-is an essential step in the organization of adherent cells, but the mechanisms by which cells achieve this orientational ordering remain unclear. Here, we seeded myofibroblasts on substrates micropatterned with stripes of fibronectin and observed that contact guidance emerges at stripe widths much greater than the cell size. To understand the origins of this surprising observation, we combined morphometric analysis of cells and their subcellular components with a, to our knowledge, novel statistical framework for modeling nonthermal fluctuations of living cells. This modeling framework is shown to predict not only the trends but also the statistical variability of a wide range of biological observables, including cell (and nucleus) shapes, sizes, and orientations, as well as stress-fiber arrangements within the cells with remarkable fidelity with a single set of cell parameters. By comparing observations and theory, we identified two regimes of contact guidance: 1) guidance on stripe widths smaller than the cell size (w ≤ 160 µm), which is accompanied by biochemical changes within the cells, including increasing stress-fiber polarization and cell elongation; and 2) entropic guidance on larger stripe widths, which is governed by fluctuations in the cell morphology. Overall, our findings suggest an entropy-mediated mechanism for contact guidance associated with the tendency of cells to maximize their morphological entropy through shape fluctuations.


Assuntos
Entropia , Fenômenos Mecânicos , Fenômenos Biomecânicos , Tamanho Celular , Homeostase , Humanos , Veia Safena/citologia
3.
Soft Matter ; 15(16): 3353-3361, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30924833

RESUMO

Uniaxial ring test is a widely used mechanical characterization method for a variety of materials, from industrial elastomers to biological materials. Here we show that the combination of local material compression, bending, and stretching during uniaxial ring test results in a geometry-dependent deformation profile that can introduce systematic errors in the extraction of mechanical parameters. We identify the stress and strain regimes under which stretching dominates and develop a simple image-based analysis approach that eliminates these systematic errors. We rigorously test this approach computationally and experimentally, and demonstrate that we can accurately estimate the sample mechanical properties for a wide range of ring geometries. As a proof of concept for its application, we use the approach to analyze explanted rat vascular tissues and find a clear temporal change in the mechanical properties of these explants after graft implantation. The image-based approach can therefore offer a straightforward, versatile, and accurate method for mechanically characterizing new classes of soft and biological materials.


Assuntos
Teste de Materiais/métodos , Fenômenos Mecânicos , Imagem Molecular , Animais , Aorta/diagnóstico por imagem , Fenômenos Biomecânicos , Análise de Elementos Finitos , Ratos , Estresse Mecânico
4.
Soft Matter ; 15(6): 1435-1443, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30666323

RESUMO

Controlled stirring of a solution is a household task in most laboratories. However, most stirring methods are perturbative or require vessels with predefined shapes and sizes. Here we propose a novel stirring system based on suspended magnetically-actuated pillars (SMAPs), inspired by the ability of biological flagella and cilia to generate flow. We fabricated flexible, millimeter-scale magnetic pillars grafted on transparent polydimethylsiloxane (PDMS) substrates and built a simple actuation setup to control the motion of the pillars remotely. We tested the system with a standard 24-well plate routinely used in most research laboratories and demonstrate that the magnetic actuation results in robust bending of the pillars and large-scale fluid flow in the wells. Quantitative analysis using computational fluid dynamics modeling indicates that the flow profile in the well can be tuned by modulating the applied magnetic field and the geometries of the well and the pillar. Finally, we show that, by employing the stirring system in a standard cell culture plate, we were able to obtain controlled clustering of cells. The SMAP stirring system is therefore a promising cost-effective and scalable stirring approach for various types of studies involving colloids as well as soft and biological materials.


Assuntos
Técnicas de Cultura de Células , Hidrodinâmica , Fenômenos Magnéticos , Biomimética , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Cílios , Dimetilpolisiloxanos , Desenho de Equipamento , Humanos , Compostos de Ferro , Fenômenos Físicos
5.
Curr Opin Organ Transplant ; 24(5): 590-597, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31389812

RESUMO

PURPOSE OF REVIEW: For many disorders that result in loss of organ function, the only curative treatment is organ transplantation. However, this approach is severely limited by the shortage of donor organs. Tissue engineering has emerged as an alternative solution to this issue. This review discusses the concept of tissue engineering from a technical viewpoint and summarizes the state of the art as well as the current shortcomings, with the aim of identifying the key lessons that we can learn to further advance the engineering of functional tissues and organs. RECENT FINDINGS: A plethora of tissue-engineering strategies have been recently developed. Notably, these strategies put different emphases on the in-vitro and in-situ processes (i.e. preimplantation and postimplantation) that take place during tissue formation. Biophysical and biomechanical interactions between the cells and the scaffold/biomaterial play a crucial role in all steps and have started to be exploited to steer tissue regeneration. SUMMARY: Recent works have demonstrated the need to better understand the in-vitro and in-situ processes during tissue formation, in order to regenerate complex, functional organs with desired cellular organization and tissue architecture. A concerted effort from both fundamental and tissue-specific research has the potential to accelerate progress in the field.


Assuntos
Órgãos Bioartificiais , Transplante de Órgãos/métodos , Medicina Regenerativa , Engenharia Tecidual/métodos , Animais , Humanos , Alicerces Teciduais
6.
Langmuir ; 33(25): 6342-6352, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28558246

RESUMO

Fibrin is a plasma protein with a central role in blood clotting and wound repair. Upon vascular injury, fibrin forms resilient fibrillar networks (clots) via a multistep self-assembly process, from monomers, to double-stranded protofibrils, to a branched network of thick fibers. In vitro, fibrin self-assembly is sensitive to physicochemical conditions like the solution pH and ionic strength, which tune the strength of the noncovalent driving forces. Here we report a surprising finding that the buffer-which is necessary to control the pH and is typically considered to be inert-also significantly influences fibrin self-assembly. We show by confocal microscopy and quantitative light scattering that various common buffering agents have no effect on the initial assembly of fibrin monomers into protofibrils but strongly hamper the subsequent lateral association of protofibrils into thicker fibers. We further find that the structural changes are independent of the molecular structure of the buffering agents as well as of the activation mechanism and even occur in fibrin networks formed from platelet-poor plasma. This buffer-mediated decrease in protofibril bundling results in a marked reduction in the permeability of fibrin networks but only weakly influences the elastic modulus of fibrin networks, providing a useful tuning parameter to independently control the elastic properties and the permeability of fibrin networks. Our work raises the possibility that fibrin assembly in vivo may be regulated by variations in the acute-phase levels of bicarbonate and phosphate, which act as physiological buffering agents of blood pH. Moreover, our findings add a new example of buffer-induced effects on biomolecular self-assembly to recent findings for a range of proteins and lipids.


Assuntos
Fibrina/química , Coagulação Sanguínea , Soluções Tampão , Fibrinogênio , Substâncias Macromoleculares
7.
Soft Matter ; 13(47): 8886-8893, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29057402

RESUMO

Fibrous networks are ideal functional materials since they provide mechanical rigidity at low weight. Here, we demonstrate that fibrous networks of the blood clotting protein fibrin undergo a strong and irreversible increase in their mechanical rigidity in response to uniaxial compression. This rigidification can be precisely controlled by the level of applied compressive strain, providing a means to program the network rigidity without having to change its composition. To identify the underlying mechanism we measure single fiber-fiber interactions using optical tweezers. We further develop a minimal computational model of cohesive fiber networks that shows that stiffening arises due to the formation of new bonds in the compressed state, which develop tensile stress when the network is re-expanded. The model predicts that the network stiffness after a compression cycle obeys a power-law dependence on tensile stress, which we confirm experimentally. This finding provides new insights into how biological tissues can adapt themselves independently of any cellular processes, offering new perspectives to inspire the design of reprogrammable materials.

8.
Biophys J ; 111(5): 1026-34, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27602730

RESUMO

Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.


Assuntos
Fibrina/química , Elasticidade , Fibrina/metabolismo , Humanos , Microscopia de Fluorescência , Pinças Ópticas , Reologia , Estresse Mecânico
9.
Phys Rev Lett ; 117(21): 217802, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27911537

RESUMO

When sheared, most elastic solids including metals, rubbers, and polymer gels dilate perpendicularly to the shear plane. This behavior, known as the Poynting effect, is characterized by a positive normal stress. Surprisingly, fibrous biopolymer gels exhibit a negative normal stress under shear. Here we show that this anomalous behavior originates from the open-network structure of biopolymer gels. Using fibrin networks with a controllable pore size as a model system, we show that the normal-stress response to an applied shear is positive at short times, but decreases to negative values with a characteristic time scale set by pore size. Using a two-fluid model, we develop a quantitative theory that unifies the opposite behaviors encountered in synthetic and biopolymer gels.

10.
Soft Matter ; 12(12): 3066-73, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26908197

RESUMO

There is a strong demand for nanoindentation methods to probe the heterogeneous viscoelastic properties of soft tissues. Important applications include diagnosis of early onset diseases such as arthritis and investigations into cellular mechanoresponse in tissue. Quantification of tissue mechanics at length and time scales relevant to biological processes, however, remains a technical challenge. Here, we present a new nanoindentation approach that is ideally suited to probe the viscoelastic properties of soft, hydrated tissues. We built a ferrule-top probe that uses wavelength modulation in a Fabry-Pérot cavity configuration to detect cantilever deflection and to drive a feedback-controlled piezoelectric actuator. This technique allows us to control the static load applied onto the sample using an all-optical mm-sized probe. We extract the local elastic and viscous moduli of the samples by superposing a small oscillatory load and recording the indentation depth at the frequency of oscillation. By using a set of silicone elastomers with a range of stiffnesses representative of biological tissues, we demonstrate that the technique can accurately determine moduli over a wide range (0.1-100 kPa) and over a frequency range of 0.01-10 Hz. Direct comparison with macroscopic rheology measurements yields excellent quantitative agreement, without any fitting parameters. Finally, we show how this method can provide a spatially-resolved map of large variations in mechanical properties (orders of magnitude) across the surface of soft samples thanks to high sensitivity over large (>µm) cantilever deflections. This approach paves the way to investigations into the local dynamic mechanical properties of biological soft matter.


Assuntos
Modelos Moleculares , Elasticidade , Interferometria , Pressão , Silício/química , Viscosidade
11.
Soft Matter ; 12(7): 2145-56, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26761718

RESUMO

Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation factor XIII. Furthermore, at high stress, the protofibrils contribute independently to the network elasticity, which may reflect a decoupling of the tight bundle structure. The hierarchical architecture of fibrin fibers can thus account for the nonlinearity and enormous elastic resilience characteristic of blood clots.


Assuntos
Biopolímeros/química , Fator XIII/química , Fibrina/química , Fenômenos Biomecânicos , Elasticidade , Dureza , Humanos , Cinética , Reologia , Estresse Mecânico , Termodinâmica
12.
Methods Mol Biol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38647865

RESUMO

Organoids have emerged as robust tools for unravelling the mechanisms that underly tissue development. They also serve as important in vitro systems for studying fundamentals of stem cell behavior and for building advanced disease models. During early development, a crucial step in the formation of the central nervous system is patterning of the neural tube dorsal-ventral (DV) axis. Here we describe a simple and rapid culture protocol to produce human neuroepithelial (NE) cysts and DV-patterned organoids from single human-induced pluripotent stem cells (hiPSCs). Rather than being embedded within a matrix, hiPSCs undergo a 5-day differentiation process in medium containing soluble extracellular matrix and are allowed to self-organize into 3D cysts with defined central lumen structures that express early neuroepithelial markers. Moreover, upon stimulation with sonic hedgehog proteins and all-trans retinoic acid, NE cysts further develop into NE organoids with DV patterning. This rapid generation of patterned NE organoids using simple culture conditions enables mimicking, monitoring, and longitudinal manipulation of NE cell behavior. This straightforward culture system makes NE organoids a tractable model for studying neural stem cell self-organization and early neural tube developmental events.

13.
Bioengineering (Basel) ; 11(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38671823

RESUMO

In the event of disease or injury, restoration of the native organization of cells and extracellular matrix is crucial for regaining tissue functionality. In the cornea, a highly organized collagenous tissue, keratocytes can align along the anisotropy of the physical microenvironment, providing a blueprint for guiding the organization of the collagenous matrix. Inspired by this physiological process, anisotropic contact guidance cues have been employed to steer the alignment of keratocytes as a first step to engineer in vitro cornea-like tissues. Despite promising results, two major hurdles must still be overcome to advance the field. First, there is an enormous design space to be explored in optimizing cellular contact guidance in three dimensions. Second, the role of contact guidance cues in directing the long-term deposition and organization of extracellular matrix proteins remains unknown. To address these challenges, here we combined two microengineering strategies-UV-based protein patterning (2D) and two-photon polymerization of topographies (2.5D)-to create a library of anisotropic contact guidance cues with systematically varying height (H, 0 µm ≤ H ≤ 20 µm) and width (W, 5 µm ≤ W ≤ 100 µm). With this unique approach, we found that, in the short term (24 h), the orientation and morphology of primary human fibroblastic keratocytes were critically determined not only by the pattern width, but also by the height of the contact guidance cues. Upon extended 7-day cultures, keratocytes were shown to produce a dense, fibrous collagen network along the direction of the contact guidance cues. Moreover, increasing the heights also increased the aligned fraction of deposited collagen and the contact guidance response of cells, all whilst the cells maintained the fibroblastic keratocyte phenotype. Our study thus reveals the importance of dimensionality of the physical microenvironment in steering both cellular organization and the formation of aligned, collagenous tissues.

14.
Biofabrication ; 16(3)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574554

RESUMO

The anisotropic organization of cells and the extracellular matrix (ECM) is essential for the physiological function of numerous biological tissues, including the myocardium. This organization changes gradually in space and time, during disease progression such as myocardial infarction. The role of mechanical stimuli has been demonstrated to be essential in obtaining, maintaining and de-railing this organization, but the underlying mechanisms are scarcely known. To enable the study of the mechanobiological mechanisms involved,in vitrotechniques able to spatiotemporally control the multiscale tissue mechanical environment are thus necessary. Here, by using light-sensitive materials combined with light-illumination techniques, we fabricated 2D and 3Din vitromodel systems exposing cells to multiscale, spatiotemporally resolved stiffness anisotropies. Specifically, spatial stiffness anisotropies spanning from micron-sized (cellular) to millimeter-sized (tissue) were achieved. Moreover, the light-sensitive materials allowed to introduce the stiffness anisotropies at defined timepoints (hours) after cell seeding, facilitating the study of their temporal effects on cell and tissue orientation. The systems were tested using cardiac fibroblasts (cFBs), which are known to be crucial for the remodeling of anisotropic cardiac tissue. We observed that 2D stiffness micropatterns induced cFBs anisotropic alignment, independent of the stimulus timing, but dependent on the micropattern spacing. cFBs exhibited organized alignment also in response to 3D stiffness macropatterns, dependent on the stimulus timing and temporally followed by (slower) ECM co-alignment. In conclusion, the developed model systems allow improved fundamental understanding of the underlying mechanobiological factors that steer cell and ECM orientation, such as stiffness guidance and boundary constraints.


Assuntos
Matriz Extracelular , Engenharia Tecidual , Engenharia Tecidual/métodos , Miocárdio , Coração , Fibroblastos
15.
Front Cell Dev Biol ; 11: 1267822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779894

RESUMO

Ventral actin stress fibers (SFs) are a subset of actin SFs that begin and terminate at focal adhesion (FA) complexes. Ventral SFs can transmit forces from and to the extracellular matrix and serve as a prominent mechanosensing and mechanotransduction machinery for cells. Therefore, quantitative analysis of ventral SFs can lead to deeper understanding of the dynamic mechanical interplay between cells and their extracellular matrix (mechanoreciprocity). However, the dynamic nature and organization of ventral SFs challenge their quantification, and current quantification tools mainly focus on all SFs present in cells and cannot discriminate between subsets. Here we present an image analysis-based computational toolbox, called SFAlab, to quantify the number of ventral SFs and the number of ventral SFs per FA, and provide spatial information about the locations of the identified ventral SFs. SFAlab is built as an all-in-one toolbox that besides analyzing ventral SFs also enables the identification and quantification of (the shape descriptors of) nuclei, cells, and FAs. We validated SFAlab for the quantification of ventral SFs in human fetal cardiac fibroblasts and demonstrated that SFAlab analysis i) yields accurate ventral SF detection in the presence of image imperfections often found in typical fluorescence microscopy images, and ii) is robust against user subjectivity and potential experimental artifacts. To demonstrate the usefulness of SFAlab in mechanobiology research, we modulated actin polymerization and showed that inhibition of Rho kinase led to a significant decrease in ventral SF formation and the number of ventral SFs per FA, shedding light on the importance of the RhoA pathway specifically in ventral SF formation. We present SFAlab as a powerful open source, easy to use image-based analytical tool to increase our understanding of mechanoreciprocity in adherent cells.

16.
iScience ; 26(4): 106423, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37035009

RESUMO

Environmental stiffness is a crucial determinant of cell function. There is a long-standing quest for reproducible and (human matrix) bio-mimicking biomaterials with controllable mechanical properties to unravel the relationship between stiffness and cell behavior. Here, we evaluate methacrylated human recombinant collagen peptide (RCPhC1-MA) hydrogels as a matrix to control 3D microenvironmental stiffness and monitor cardiac cell response. We show that RCPhC1-MA can form hydrogels with reproducible stiffness in the range of human developmental and adult myocardium. Cardiomyocytes (hPSC-CMs) and cardiac fibroblasts (cFBs) remain viable for up to 14 days inside RCPhC1-MA hydrogels while the effect of hydrogel stiffness on extracellular matrix production and hPSC-CM contractility can be monitored in real-time. Interestingly, whereas the beating behavior of the hPSC-CM monocultures is affected by environmental stiffness, this effect ceases when cFBs are present. Together, we demonstrate RCPhC1-MA to be a promising candidate to mimic and control the 3D biomechanical environment of cardiac cells.

17.
Adv Sci (Weinh) ; 10(31): e2303136, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37740666

RESUMO

The extracellular environment defines a physical boundary condition with which cells interact. However, to date, cell response to geometrical environmental cues is largely studied in static settings, which fails to capture the spatiotemporally varying cues cells receive in native tissues. Here, a photoresponsive spiropyran-based hydrogel is presented as a dynamic, cell-compatible, and reconfigurable substrate. Local stimulation with blue light (455 nm) alters hydrogel swelling, resulting in on-demand reversible micrometer-scale changes in surface topography within 15 min, allowing investigation into cell response to controlled geometry actuations. At short term (1 h after actuation), fibroblasts respond to multiple rounds of recurring topographical changes by reorganizing their nucleus and focal adhesions (FA). FAs form primarily at the dynamic regions of the hydrogel; however, this propensity is abolished when the topography is reconfigured from grooves to pits, demonstrating that topographical changes dynamically condition fibroblasts. Further, this dynamic conditioning is found to be associated with long-term (72 h) maintenance of focal adhesions and epigenetic modifications. Overall, this study offers a new approach to dissect the dynamic interplay between cells and their microenvironment and shines a new light on the cell's ability to adapt to topographical changes through FA-based mechanotransduction.


Assuntos
Hidrogéis , Mecanotransdução Celular , Luz , Epigênese Genética
18.
Adv Mater ; 35(13): e2206110, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36461812

RESUMO

Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.


Assuntos
Fenômenos Mecânicos , Membrana Celular , Morfogênese
19.
J Am Chem Soc ; 134(24): 10200-8, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22646916

RESUMO

Crowded environments inside cells exert significant effects on protein structure, stability, and function, but their effects on (pre)folding dynamics and kinetics, especially at molecular levels, remain ill-understood. Here, we examine the latter for, as an initial candidate, a small de novo ß-hairpin using extensive all-atom molecular dynamics simulations for crowder volume fractions φ up to 40%. We find that crowding does not introduce new folding intermediates or misfolded structures, although, as expected, it promotes compact structures and reduces the accessible conformational space. Furthermore, while hydrophobic-collapse-mediated folding is slightly enhanced, the turn-directed zipper mechanism (dominant in crowder-free situations) increases many-fold, becoming even more dominant. Interestingly, φ influences the stability of the folding intermediates (FI(1) and FI(2)) in an apparently counterintuitive manner, which can be understood only by considering specific intrachain interactions and intermediate (and hierarchical) structural transitions. For φ values <20%, native-turn formation is enhanced, and FI(1), characterized by a hairpin structure but slightly mismatched hydrophobic contacts, increases in frequency, thus enhancing eventual folding. However, higher φ values impede native-turn formation, and FI(2), which lacks native turns, re-emerges and increasingly acts as a kinetic trap. The change in the stability of these intermediates with φ strongly correlates with the hierarchical folding stages and their kinetics. The results show that crowding assists intermediate structural changes more by impeding backward transitions than by promoting forward transitions and that a delicate competition between reduction in configuration space and introduction of kinetic traps along the folding route is key to understanding folding kinetics under crowded conditions.


Assuntos
Peptídeos/química , Dobramento de Proteína , Cinética , Simulação de Dinâmica Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína
20.
Biomacromolecules ; 13(3): 691-8, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22293015

RESUMO

Collagen networks, the main structural/mechanical elements in biological tissues, increasingly serve as biomimetic scaffolds for cell behavioral studies, assays, and tissue engineering, and yet their full spectrum of nonlinear behavior remains unclear. Here, with self-assembled type-I collagen as model, we use metrics beyond those in standard single-harmonic analysis of rheological measurements to reveal strain-softening and strain-stiffening of collagen networks both in instantaneous responses and at steady state. The results show how different deformation mechanisms, such as deformation-induced increase in the elastically active fibrils, nonlinear extension of individual fibrils, and slips in the physical cross-links in the network, can lead to the observed complex nonlinearity. We demonstrate how comprehensive rheological analyses can uncover the rich mechanical properties of biopolymer networks, including the above-mentioned softening as well as an early strain-stiffening, which are important for understanding physiological response of biological materials to mechanical loading.


Assuntos
Biopolímeros/química , Colágeno/química , Resistência ao Cisalhamento , Simulação por Computador , Modelos Teóricos , Reologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA