Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Langmuir ; 34(48): 14519-14527, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30253102

RESUMO

We report on the structure and optical manipulation of the director configurations in emulsions of liquid-crystalline droplets of a compound exhibiting the nematic (N) and the twist-bend nematic (NTB) phases. We demonstrate a decrease in the ratio of the bent elastic constant K33 to the splay constant K11 by nearly 2 orders of magnitude with decreasing temperature in the N phase. The director structures in liquid-crystal droplets doped with a photoswitchable surfactant without and under ultraviolet (UV) light are discussed in light of the strong elastic anisotropy of the investigated compound. We also compare our findings with the results obtained in doped nematic droplets of a conventional 4-cyano-4'-pentylbiphenyl (5CB) liquid crystal. The dynamics of droplets in the NTB phase by UV light irradiation are also studied using polarizing and confocal microscopies.

2.
Beilstein J Nanotechnol ; 9: 1544-1549, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977687

RESUMO

We have experimentally investigated the effect of the reorientation of a nematic liquid crystal (LC) in an electric field on the photoluminescence (PL) of CdSe/ZnS semiconductor quantum dots (QDs). To the LC with positive dielectric anisotropy, 1 wt % QDs with a core diameter of 5 nm was added. We compared the change of PL intensity and decay times of QDs in LC cells with initially planar or vertically orientated molecules, i.e., in active or passive LC matrices. The PL intensity of the QDs increases four-fold in the active LC matrix and only 1.6-fold in the passive LC matrix without reorientation of the LC molecules. With increasing electric field strength, the quenching of QDs luminescence occurred in the active LC matrix, while the PL intensity did not change in the passive LC matrix. The change in the decay time with increasing electric field strength was similar to the behavior of the PL intensity. The observed buildup in the QDs luminescence can be associated with the transfer of energy from LC molecules to QDs. In a confocal microscope, we observed the increase of particle size and the redistribution of particles in the active LC matrix with the change of the electric field strength. At the same time, no significant changes occurred in the passive LC matrix. With the reorientation of LC molecules from the planar in vertical position in the LC active matrix, quenching of QD luminescence and an increase of the ion current took place simultaneously. The obtained results are interesting for controlling the PL intensity of semiconductor QDs in liquid crystals by the application of electric fields.

3.
Nanotechnol Sci Appl ; 11: 15-21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731613

RESUMO

BACKGROUND: The luminescence amplification of semiconductor quantum dots (QD) in the presence of self-assembled gold nanoparticles (Au NPs) is one of way for creating biosensors with highly efficient transduction. AIMS: The objective of this study was to fabricate the hybrid structures based on semiconductor CdSe/ZnS QDs and Au NP arrays and to use them as biosensors of protein. METHODS: In this paper, the hybrid structures based on CdSe/ZnS QDs and Au NP arrays were fabricated using spin coating processes. Au NP arrays deposited on a glass wafer were investigated by optical microscopy and absorption spectroscopy depending on numbers of spin coating layers and their baking temperature. Bovine serum albumin (BSA) was used as the target protein analyte in a phosphate buffer. A confocal laser scanning microscope was used to study the luminescent properties of Au NP/QD hybrid structures and to test BSA. RESULTS: The dimensions of Au NP aggregates increased and the space between them decreased with increasing processing temperature. At the same time, a blue shift of the plasmon resonance peak in the absorption spectra of Au NP arrays was observed. The deposition of CdSe/ZnS QDs with a core diameter of 5 nm on the surface of the Au NP arrays caused an increase in absorption and a red shift of the plasmon peak in the spectra. The exciton-plasmon enhancement of the QDs' photoluminescence intensity has been obtained at room temperature for hybrid structures with Au NPs array pretreated at temperatures of 100°C and 150°C. It has been found that an increase in the weight content of BSA increases the photoluminescence intensity of such hybrid structures. CONCLUSION: The ability of the qualitative and quantitative determination of protein content in solution using the Au NP/QD structures as an optical biosensor has been shown experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA