Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299042

RESUMO

The multi-detection size exclusion chromatography (SEC) has been recognized as an advanced analytical technique for the characterization of macromolecules and process control, as well as the manufacturing and formulation of biotechnology products. It reveals reproducible molecular characterization data, such as molecular weight and its distribution, and the size, shape, and composition of the sample peaks. The aim of this work was to investigate the potential and suitability of the multi-detection SEC as a tool for surveillance over the molecular processes during the conjugation reaction between the antibody (IgG) and horseradish peroxidase (HRP), and demonstrate the plausibility of its application in the quality control of the final product, the IgG-HRP conjugate. Guinea pig anti-Vero IgG-HRP conjugate was prepared using a modified periodate oxidation method, based on periodate oxidation of the carbohydrate side chains of HRP, followed by the formation of Schiff bases between the activated HRP and amino groups of the IgG. The quantitative molecular characterization data of the starting samples, intermediates, and final product were obtained by multi-detection SEC. Titration of the prepared conjugate was performed by the ELISA and its optimal working dilution was determined. This methodology proved to be a promising and powerful technology for the IgG-HRP conjugate process control and development, as well as for the quality control of the final product, as verified by the analysis of several commercially available reagents.


Assuntos
Imunoglobulina G , Animais , Cobaias , Peroxidase do Rábano Silvestre/química , Ácido Periódico , Controle de Qualidade , Cromatografia em Gel
2.
Molecules ; 27(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35268765

RESUMO

Quality control of human immunoglobulin formulations produced by caprylic acid precipitation necessitates a simple, rapid, and accurate method for determination of residual caprylic acid. A high-performance liquid chromatography method for that purpose was developed and validated. The method involves depletion of immunoglobulins, the major interfering components that produce high background noise, by precipitation with acetonitrile (1:1, v/v). Chromatographic analysis of caprylic acid, preserved in supernatant with no loss, was performed using a reverse-phase C18 column (2.1 × 150 mm, 3 µm) as a stationary phase and water with 0.05% TFA-acetonitrile (50:50, v/v) as a mobile phase at a flow rate of 0.2 mL/min and run time of 10 min. The developed method was successfully validated according to the ICH guidelines. The validation parameters confirmed that method was linear, accurate, precise, specific, and able to provide excellent separation of peaks corresponding to caprylic acid and the fraction of remaining immunoglobulins. Furthermore, a 24-1 fractional factorial design was applied in order to test the robustness of developed method. As such, the method is highly suitable for the quantification of residual caprylic acid in formulations of human immunoglobulins for therapeutic use, as demonstrated on samples produced by fractionation of convalescent anti-SARS-CoV-2 human plasma at a laboratory scale. The obtained results confirmed that the method is convenient for routine quality control.


Assuntos
Caprilatos/análise , Cromatografia Líquida de Alta Pressão/métodos , Composição de Medicamentos , Imunoglobulinas/química , COVID-19/terapia , COVID-19/virologia , Caprilatos/química , Humanos , Imunização Passiva/métodos , Imunoglobulinas/uso terapêutico , Limite de Detecção , Reprodutibilidade dos Testes , SARS-CoV-2/isolamento & purificação , Soroterapia para COVID-19
3.
Arch Virol ; 161(6): 1455-67, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26935920

RESUMO

Measles virus and mumps virus (MeV and MuV) are enveloped RNA viruses used for production of live attenuated vaccines for prophylaxis of measles and mumps disease, respectively. For biotechnological production of and basic research on these viruses, the preparation of highly purified and infectious viruses is a prerequisite, and to meet that aim, knowledge of their stability and biophysical properties is crucial. Our goal was to carry out a detailed investigation of the stability of MeV and MuV under various pH, temperature, shear stress, filtration and storage conditions, as well as to evaluate two commonly used purification techniques, ultracentrifugation and diafiltration, with regard to their efficiency and effect on virus properties. Virus titers were estimated by CCID50 assay, particle size and concentration were measured by Nanoparticle tracking analysis (NTA) measurements, and the host cell protein content was determined by ELISA. The results demonstrated the stability of MuV and MeV at pH <9 and above pH 4 and 5, respectively, and aggregation was observed at pH >9. Storage without stabilizer did not result in structural changes, but the reduction in infectivity after 24 hours was significant at +37 °C. Vortexing of the viruses resulted in significant particle degradation, leading to lower virus titers, whereas pipetting had much less impact on virus viability. Diafiltration resulted in higher recovery of both total and infectious virus particles than ultracentrifugation. These results provide important data for research on all upstream and downstream processes on these two viruses regarding biotechnological production and basic research.


Assuntos
Vírus do Sarampo/isolamento & purificação , Vírus da Caxumba/isolamento & purificação , Animais , Fenômenos Biofísicos , Chlorocebus aethiops , Filtração , Humanos , Concentração de Íons de Hidrogênio , Vacina contra Sarampo/isolamento & purificação , Vírus do Sarampo/química , Vacina contra Caxumba/isolamento & purificação , Vírus da Caxumba/química , Ultracentrifugação , Células Vero
4.
Prep Biochem Biotechnol ; 46(7): 695-703, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26760928

RESUMO

Tetanus toxoid (TTd) is a highly immunogenic, detoxified form of tetanus toxin, a causative agent of tetanus disease, produced by Clostridium tetani. Since tetanus disease cannot be eradicated but is easily prevented by vaccination, the need for the tetanus vaccine is permanent. The aim of this work was to investigate the possibility of optimizing TTd purification, i.e., ammonium sulfate precipitation process. The influence of the percentage of ammonium sulfate, starting amount of TTd, buffer type, pH, temperature, and starting purity of TTd on the purification process were investigated using optimal design for response surface models. Responses measured for evaluation of the ammonium sulfate precipitation process were TTd amount (Lf/mL) and total protein content. These two parameters were used to calculate purity (Lf/mgPN) and the yield of the process. Results indicate that citrate buffer, lower temperature, and lower starting amount of TTd result in higher purities of precipitates. Gel electrophoresis combined with matrix-assisted laser desorption ionization-mass spectrometric analysis of precipitates revealed that there are no inter-protein cross-links and that all contaminating proteins have pIs similar to TTd, so this is most probably the reason for the limited success of purification by precipitation.


Assuntos
Sulfato de Amônio/química , Toxoide Tetânico/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Toxoide Tetânico/biossíntese
5.
Anal Bioanal Chem ; 406(1): 293-304, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24217948

RESUMO

In order to perform their function, proteins frequently interact with other proteins. Various methods are used to reveal protein interacting partners, and affinity chromatography is one of them. Snake venom is composed mostly of proteins, and various protein complexes in the venom have been found to exhibit higher toxicity levels than respective components separately. Complexes can modulate envenomation activity of a venom and/or potentiate its effect. Our previous data indicate that the most toxic components of the Vipera ammodytes ammodytes (Vaa) venom isolated so far-ammodytoxins (Atxs)-are contributing to the venom's toxicity only moderately; therefore, we aimed to explore whether they have some interacting partner(s) potentiating toxicity. For screening of possible interactions, immuno-affinity chromatography combined with identification by mass spectrometry was used. Various chemistries (epoxy, carbonyldiimidazole, ethylenediamine) as well as protein G functionality were used to immobilize antibodies on monolith support, a Convective Interaction Media disk. Monoliths have been demonstrated to better suit the separation of large biomolecules. Using such approach, several proteins were indicated as potential Atx-binding proteins. Among these, the interaction of Atxs with a Kunitz-type inhibitor was confirmed by far-Western dot-blot and surface plasmon resonance measurement. It can be concluded that affinity chromatography on monolithic columns combined with mass spectrometry identification is a successful approach for screening of protein interactions and it resulted with detection of the interaction of Atx with Kunitz-type inhibitor in Vaa venom for the first time.


Assuntos
Anticorpos Imobilizados/química , Peptídeos/química , Proteínas de Plantas/química , Proteínas de Répteis/química , Venenos de Víboras/química , Animais , Cromatografia de Afinidade , Espectrometria de Massas , Ligação Proteica , Mapeamento de Interação de Proteínas , Viperidae/fisiologia
6.
Toxins (Basel) ; 15(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37368699

RESUMO

Envenomations induced by animal bites and stings constitute a significant public health burden. Even though a standardized protocol does not exist, parenterally administered polyclonal antivenoms remain the mainstay in snakebite therapy. There is a prevailing opinion that their application by the i.m. route has poor efficacy and that i.v. administration should preferentially be chosen in order to achieve better accomplishment of the antivenom therapeutic activity. Recently, it has been demonstrated that neutralization not only in the systemic circulation but also in the lymphatic system might be of great importance for the clinical outcome since it represents another relevant body compartment through which the absorption of the venom components occurs. In this review, the present-day and summarized knowledge of the laboratory and clinical findings on the i.v. and i.m. routes of antivenom administration is provided, with a special emphasis on the contribution of the lymphatic system to the process of venom elimination. Until now, antivenom-mediated neutralization has not yet been discussed in the context of the synergistic action of both blood and lymph. A current viewpoint might help to improve the comprehension of the venom/antivenom pharmacokinetics and the optimal approach for drug application. There is a great need for additional dependable, practical, well-designed studies, as well as more practice-related experience reports. As a result, opportunities for resolving long-standing disputes over choosing one therapeutic principle over another might be created, improving the safety and effectiveness of snakebite management.


Assuntos
Antivenenos , Mordeduras de Serpentes , Animais , Antivenenos/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Venenos Elapídicos/uso terapêutico , Serpentes , Venenos de Serpentes/uso terapêutico
7.
Hum Vaccin Immunother ; 19(3): 2270310, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37905722

RESUMO

During the SARS-CoV-2 pandemic, the lack of standardized measurements of the immune response after vaccination or recovery from COVID-19 resulted in incomparable results and hindered correlation establishment. Prioritizing reliable and standardized methods to monitor pathogen-specific immunity is crucial, not only during the COVID-19 pandemic but also for future outbreaks. During our study of the humoral immune response, we used a SARS-CoV-2 wild-type neutralization assay, ensuring the measurement of the immune response directed to all SARS-CoV-2 antigens in their proper conformation. A head-to-head comparison of the neutralizing antibody (NAb) responses elicited by four vaccines used in Europe during 2021 (BNT162b2, mRNA-1273, ChAdOx nCoV-19, and Ad26.COV2.S) and their comparison to NAb responses in convalescents showed that while the amount was comparable, NAbs induced by natural infection were of higher quality. Namely, NAbs produced by disease were better activators of the complement system than NAbs induced by vaccination. Furthermore, the contribution of spike protein-specific IgGs to the SARS-CoV-2 neutralization was lower in convalescents compared to vaccinees, indicating that those who recovered from COVID-19 were armed with antibodies of additional specificities and/or classes that contributed to virus neutralization. These findings suggest that a higher stringency of public policy measures targeting individuals who have recovered from COVID-19, in comparison to those who have been vaccinated, may not have been fully justified.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Anticorpos Neutralizantes , SARS-CoV-2 , Ad26COVS1 , Vacina BNT162 , Pandemias , Imunidade Humoral , Vacinação , Anticorpos Antivirais
8.
Anal Bioanal Chem ; 402(9): 2737-48, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22349324

RESUMO

The ammodytoxins (Atxs) are neurotoxic phospholipases which occur in Vipera ammodytes ammodytes (Vaa) snake venom. There are three Atx isoforms, A, B, and C, which differ in only five amino acid positions at the C-terminus but differ substantially in their toxicity. The objective of this study was to establish an analytical method for unambiguous identification of all three isoforms and to use the method to assess a procedure for purification of the most toxic phospholipase, AtxA, from the venom. Isolation procedure for AtxA consisted of isolation of Atx-cross-reactive material (proteins recognized by anti-Atx antibodies), by use of an affinity column, then cation exchange on CIM (Convective Interaction Media) disks. The purification procedure was monitored by means of reversed-phase chromatography (RPC) and mass spectrometry (MS). Although previous cation exchange of the pure isoforms enabled separate elution of AtxA from B and C, separation of AtxA from Atxs mixture was not accomplished. RPC was not able to separate the Atx isoforms, whereas an MS based approach proved to be more powerful. Peptides resulting from tryptic digestion of Atxs which enable differentiation between the three isoforms were successfully detected and their sequences were confirmed by post-source decay (PSD) fragmentation. Separation of Atx isoforms by ion-exchange chromatography is most presumably prevented by Atxs heterodimer formation. The tendency of Atxs to form homodimers and heterodimers of similar stability was confirmed by molecular modeling.


Assuntos
Cromatografia/métodos , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Fosfolipases/química , Fosfolipases/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Venenos de Víboras/química , Sequência de Aminoácidos , Animais , Proteínas Neurotóxicas de Elapídeos/toxicidade , Isoenzimas/química , Isoenzimas/isolamento & purificação , Isoenzimas/toxicidade , Modelos Moleculares , Dados de Sequência Molecular , Fosfolipases/toxicidade , Venenos de Víboras/toxicidade , Viperidae
9.
Toxins (Basel) ; 14(7)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35878221

RESUMO

Antivenoms contain either pure animal IgGs or their fragments as an active substance, and are the only specific therapeutics against envenomation arising from snakebites. Although they are highly needed, the low sustainability of such preparations' manufacture causes constant global shortages. One reason for this is the stability of the product, which contributes not only to the manufacture sustainability, but the product safety as well. It has been hypothesized that the roughness of conditions to which IgGs are exposed during downstream purification disturbs their conformation, making them prone to aggregation, particularly after exposure to secondary stress. The aim of this research was to investigate how the roughness of the downstream purification conditions influences the stability properties of purified IgGs. For this purpose, equine IgGs were extracted from unique hyperimmune plasma by two mild condition-based operational procedures (anion-exchange chromatography and caprylic acid precipitation) and three rougher ones (ammonium sulphate precipitation, cation-exchange chromatography and protein A affinity chromatography). The stability of the refined preparations was studied under non-optimal storage conditions (37 °C, 42 °C, and a transiently lower pH) by monitoring changes in the aggregate content and thermal stability of the pure IgGs. Mild purification protocols generated IgG samples with a lower aggregate share in comparison to the rougher ones. Their tendency for further aggregation was significantly associated with the initial aggregate share. The thermal stability of IgG molecules and the aggregate content in refined samples were inversely correlated. Since the initial proportion of aggregates in the samples was influenced by the operating conditions, we have shown a strong indication that each of them also indirectly affected the stability of the final preparations. This suggests that mild condition-based refinement protocols indeed generate more stable IgGs.


Assuntos
Antivenenos , Mordeduras de Serpentes , Animais , Cavalos , Imunoglobulina G
10.
Front Immunol ; 13: 889736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655779

RESUMO

During the pre-vaccine era of the COVID-19 pandemic convalescent plasma has once again emerged as a major potential therapeutic form of passive immunization that in specific cases still represents irreplaceable treatment option. There is a growing concern that variable concentration of neutralizing antibodies, present in convalescent plasma which originates from different donors, apparently affects its effectiveness. The drawback can be overcome through the downstream process of immunoglobulin fraction purification into a standardized product of improved safety and efficacy. All modern procedures are quite lengthy processes. They are also based on fractionation of large plasma quantities whose collection is not attainable during an epidemic. When outbreaks of infectious diseases are occurring more frequently, there is a great need for a more sustainable production approach that would be goal-oriented towards assuring easily and readily available immunoglobulin of therapeutic relevance. We propose a refinement strategy for the IgG preparation achieved through simplification and reduction of the processing steps. It was designed as a small but scalable process to offer an immediately available treatment option that would simultaneously be harmonized with an increased availability of convalescent plasma over the viral outbreak time-course. Concerning the ongoing pandemic status of the COVID-19, the proof of concept was demonstrated on anti-SARS-CoV-2 convalescent plasma but is likely applicable to any other type depending on the current needs. It was guided by the idea of persistent keeping of IgG molecules in the solution, so that protection of their native structure could be assured. Our manufacturing procedure provided a high-quality IgG product of above the average recovery whose composition profile was analyzed by mass spectrometry as quality control check. It was proved free from IgA and IgM as mediators of adverse transfusion reactions, as well as of any other residual impurities, since only IgG fragments were identified. The proportion of S protein-specific IgGs remained unchanged relative to the convalescent plasma. Undisturbed IgG subclass composition was accomplished as well. However, the fractionation principle affected the final product's capacity to neutralize wild-type SARS-CoV-2 infectivity, reducing it by half. Decrease in neutralization potency significantly correlated with the amount of IgM in the starting material.


Assuntos
COVID-19 , Imunoglobulina G , COVID-19/epidemiologia , COVID-19/terapia , Vírus de DNA , Humanos , Imunização Passiva , Imunoglobulina M , Pandemias , SARS-CoV-2 , Soroterapia para COVID-19
11.
Front Immunol ; 13: 816159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273599

RESUMO

During the ongoing COVID-19 epidemic many efforts have gone into the investigation of the SARS-CoV-2-specific antibodies as possible therapeutics. Currently, conclusions cannot be drawn due to the lack of standardization in antibody assessments. Here we describe an approach of establishing antibody characterisation in emergent times which would, if followed, enable comparison of results from different studies. The key component is a reliable and reproducible assay of wild-type SARS-CoV-2 neutralisation based on a banking system of its biological components - a challenge virus, cells and an anti-SARS-CoV-2 antibody in-house standard, calibrated to the First WHO International Standard immediately upon its availability. Consequently, all collected serological data were retrospectively expressed in an internationally comparable way. The neutralising antibodies (NAbs) among convalescents ranged from 4 to 2869 IU mL-1 in a significant positive correlation to the disease severity. Their decline in convalescents was on average 1.4-fold in a one-month period. Heat-inactivation resulted in 2.3-fold decrease of NAb titres in comparison to the native sera, implying significant complement activating properties of SARS-CoV-2 specific antibodies. The monitoring of NAb titres in the sera of immunocompromised COVID-19 patients that lacked their own antibodies evidenced the successful transfusion of antibodies by the COVID-19 convalescent plasma units with NAb titres of 35 IU mL-1 or higher.


Assuntos
COVID-19/terapia , Imunização Passiva/métodos , Testes de Neutralização/métodos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/epidemiologia , Calibragem , Células Cultivadas , Doenças Transmissíveis Emergentes , Convalescença , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/imunologia , Croácia , Epidemias , Humanos , Cooperação Internacional , Padrões de Referência , Glicoproteína da Espícula de Coronavírus/imunologia , Resultado do Tratamento
12.
J Immunol Methods ; 490: 112957, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412172

RESUMO

Neutralizing antibodies against mumps and measles virus are considered a correlate of protection against these diseases. Measurement of neutralizing antibodies is mostly performed using plaque reduction neutralization assay or 50% cell culture infective dose (CCID50) neutralization assay, but there are attempts for measuring neutralizing antibodies using enzyme-linked immunosorbent assay (ELISA) which is simpler, but the literature data regarding its convenience are diverse. The role of complement and antibodies in neutralizing capacity of sera is not completely defined. Here, CCID50 neutralization assay and ELISA were used to determine the neutralization capacity against mumps and measles virus in human sera and therapeutic immunoglobulins (IVIGs). Results showed no correlation of neutralization titers obtained by CCID50 neutralization assay and IgG content obtained by ELISA for mumps or measles in human sera. Data showed some neutralization activity against measles virus and quite high against mumps virus of naïve guinea pig serum and that its addition increases neutralization capacity of IVIG and human sera against mumps and measles viruses. Heat inactivation of human sera reduced neutralization capacity against measles to small extent, and substantially against mumps virus. There is a significant impact of complement in measurement of neutralization capacity against mumps virus.


Assuntos
Anticorpos Neutralizantes/sangue , Proteínas do Sistema Complemento/metabolismo , Vírus do Sarampo/fisiologia , Sarampo/imunologia , Vírus da Caxumba/fisiologia , Caxumba/imunologia , Testes de Neutralização/métodos , Adulto , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Cobaias , Humanos , Masculino , Sarampo/diagnóstico , Pessoa de Meia-Idade , Caxumba/diagnóstico , Adulto Jovem
13.
Toxins (Basel) ; 13(3)2021 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805701

RESUMO

Snakebites are a relatively rare medical emergency in Europe. In more than half of the annual cases caused by Vipera ammodytes, Vipera berus, and Vipera aspis, immunotherapy with animal-derived antivenom is indicated. Among eight products recently identified as available against European medically relevant species, only Zagreb antivenom, Viperfav, and ViperaTAb have been used almost exclusively for decades. Zagreb antivenom comprises V. ammodytes-specific F(ab')2 fragments. Viperfav is a polyspecific preparation based on F(ab')2 fragments against V. aspis, V. berus, and V. ammodytes venoms. ViperaTAb contains Fab fragments against the venom of V. berus. In 2014 the production of Zagreb antivenom was discontinued. Additionally, in the period of 2017 to 2018 a shortage of Viperfav occurred. Due to a lack of the product indicated for the treatment of V. ammodytes bites, other antivenoms were implemented into clinical practice without comparative assessment of their eligibility. The aim of our work was to identify a high-quality antivenom that might ensure the successful treatment of V. ammodytes and V. berus bites at the preclinical level. Differentiation between bites from these two species is difficult and unreliable in clinical practice, so the availability of a unique antivenom applicable in the treatment of envenoming caused by both species would be the most advantageous for Southeastern Europe. Zagreb antivenom, Viperfav, and ViperaTAb, as well as Viper venom antitoxin for V. berus envenoming and the in-development Inoserp Europe, which was designed to treat envenoming caused by all medically important European snakes, were comparatively tested for the first time. Emphasis was placed on their physicochemical properties, primarily purity and aggregate content, as well as their in vivo protective efficacies. As Zagreb antivenom is no longer available on the European market, Viperfav is the highest-quality product currently available and the only antivenom whose neutralisation potency against V. ammodytes and V. berus venoms was above regulatory requirements.


Assuntos
Anticorpos Neutralizantes/farmacologia , Antivenenos/farmacologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras/antagonistas & inibidores , Viperidae , Animais , Anticorpos Neutralizantes/química , Especificidade de Anticorpos , Antivenenos/química , Europa (Continente) , Recursos em Saúde/provisão & distribuição , Fragmentos Fab das Imunoglobulinas/química , Mordeduras de Serpentes/imunologia , Mordeduras de Serpentes/metabolismo , Fatores de Tempo , Venenos de Víboras/imunologia , Venenos de Víboras/metabolismo , Viperidae/metabolismo
14.
Toxins (Basel) ; 13(4)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919927

RESUMO

Vipera ammodytes (V. ammodytes) is the most venomous European viper. The aim of this study was to compare the clinical efficacy and pharmacokinetic values of intravenous Vipera berus venom-specific (paraspecific) Fab fragments (ViperaTAb) and intramuscular V. ammodytes venom-specific F(ab')2 fragments (European viper venom antiserum, also called "Zagreb" antivenom) in V.ammodytes-envenomed patients. This was a prospective study of V.ammodytes-envenomed patients that were treated intravenously with ViperaTAb or intramuscularly with European viper venom antiserum that was feasible only due to the unique situation of an antivenom shortage. The highest venom concentration, survival, length of hospital stay and adverse reactions did not differ between the groups. Patients treated with intravenous Fab fragments were sicker, with significantly more rhabdomyolysis and neurotoxicity. The kinetics of Fab fragments after one or more intravenous applications matched better with the venom concentration in the early phase of envenomation compared to F(ab')2 fragments that were given intramuscularly only on admission. F(ab')2 fragments given intramuscularly had 25-fold longer apparent total body clearance and 14-fold longer elimination half-time compared to Fab fragments given intravenously (2 weeks vs. 24 h, respectively). In V.ammodytes-envenomed patients, the intramuscular use of specific F(ab')2 fragments resulted in a slow rise of antivenom serum concentration that demanded their early administration but without the need for additional doses for complete resolution of all clinical signs of envenomation. Intravenous use of paraspecific Fab fragments resulted in the immediate rise of antivenom serum concentration that enabled their use according to the clinical progress, but multiple doses might be needed for efficient therapy of thrombocytopenia due to venom recurrence, while the progression of rhabdomyolysis and neurotoxic effects of the venom could not be prevented.


Assuntos
Antivenenos/administração & dosagem , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras/antagonistas & inibidores , Viperidae , Adulto , Idoso , Animais , Feminino , Humanos , Injeções Intramusculares , Injeções Intravenosas , Masculino , Pessoa de Meia-Idade , Farmacocinética , Estudos Prospectivos , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/imunologia , Mordeduras de Serpentes/metabolismo , Resultado do Tratamento , Venenos de Víboras/imunologia , Venenos de Víboras/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-32760431

RESUMO

BACKGROUND: Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. METHODS: The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. RESULTS: Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. CONCLUSION: A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.

16.
Toxins (Basel) ; 12(12)2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327454

RESUMO

Whole IgG antivenoms are prepared from hyperimmune animal plasma by various refinement strategies. The ones most commonly used at industrial scale are precipitation by sodium or ammonium sulphate (ASP), and caprylic acid precipitation (CAP) of non-immunoglobulin proteins. The additional procedures, which have so far been used for experimental purposes only, are anion-exchange (AEX) and cation-exchange chromatography (CEX), as well as affinity chromatography (AC) using IgG's Fc-binding ligands. These protocols extract the whole IgG fraction from plasma, which contains both venom-specific and therapeutically irrelevant antibodies. Such preparations represent a complex mixture of various IgG subclasses whose functional and/or structural properties, as well as relative distribution, might be affected differently, depending on employed purification procedure. The aim of this work was to compare the influence of aforementioned refinement strategies on the IgG subclass distribution, venom-specific protective efficacy, thermal stability, aggregate formation and retained impurity profile of the final products. A unique sample of Vipera ammodytes ammodytes specific hyperimmune horse plasma was used as a starting material, enabling direct comparison of five purification approaches. The highest purity was achieved by CAP and AC (above 90% in a single step), while the lowest aggregate content was present in samples from AEX processing. Albumin was the main contaminant in IgG preparations obtained by ASP and CEX, while transferrin dominantly contaminated IgG sample from AEX processing. Alpha-1B-glycoprotein was present in CAP IgG fraction, as well as in those from ASP- and AEX-based procedures. AC approach induced the highest loss of IgG(T) subclass. CEX and AEX showed the same tendency, while CAP and ASP had almost no impact on subclass distribution. The shift in IgG subclass composition influenced the specific protective efficacy of the respective final preparation as measured in vivo. AC and CEX remarkably affected drug's venom-neutralization activity, in contrary to the CAP procedure, that preserved protective efficacy of the IgG fraction. Presented data might improve the process of designing and establishing novel downstream processing strategies and give guidance for optimization of the current ones by providing information on potency-protecting and purity-increasing properties of each purification principle.


Assuntos
Antivenenos/sangue , Cavalos/sangue , Imunoglobulina G/sangue , Pesquisa Qualitativa , Venenos de Víboras/toxicidade , Animais , Antivenenos/análise , Cromatografia por Troca Iônica/métodos , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Imunoglobulina G/análise , Masculino , Camundongos , Venenos de Víboras/antagonistas & inibidores
17.
Toxins (Basel) ; 12(3)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188060

RESUMO

The karst viper (Vipera ursinii ssp.) favours high-mountain dry grasslands in southern and south-eastern Croatia. It is medically less important than other Vipera species, because of its remote habitat and the very small amount of venom that it injects by its relatively short fangs. The scientific literature on Vipera ursinii deals mostly with the morphology, ecology and distribution range of this snake, due to the species' conservation issues, while the toxinological aspects of its venom have not so far been investigated. Here we report on the composition and biological activity of the Vipera ursinii ssp. venom. Using a proteomics approach, we have identified 25 proteins in the venom that belong to seven protein families: snake venom metalloproteinase, serine protease, secreted phospholipase A2, cysteine-rich secretory protein, snake C-type lectin-like protein, serine protease inhibitor and nerve growth factor. The Vipera ursinii ssp. venom was found to be distinctively insecticidal. Its lethal toxicity towards crickets was more than five times greater than that of Vipera ammodytes ammodytes venom, while the opposite held in mice. Interestingly, the mode of dying after injecting a mouse with Vipera ursinii ssp. venom may suggest the presence of a neurotoxic component. Neurotoxic effects of European vipers have so far been ascribed exclusively to ammodytoxins and ammodytoxin-like basic secreted phospholipases A2. Structural and immunological analyses of the Vipera ursinii ssp. venom, however, confirmed that ammodytoxin-like proteins are not present in this venom.


Assuntos
Espécies em Perigo de Extinção , Proteoma/análise , Venenos de Víboras , Viperidae , Animais , Croácia , Lectinas Tipo C/análise , Dose Letal Mediana , Metaloproteases/análise , Fosfolipases A2 Secretórias/análise , Proteômica , Venenos de Víboras/química , Venenos de Víboras/toxicidade
18.
J Pharm Biomed Anal ; 164: 276-282, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30408624

RESUMO

The hyperimmune horse plasma (HHP), prepared through active immunisation of horses with an antigen of interest, is the most common starting material for antitoxin (animal antibody-based therapeutics) production. Precise IgG quantification in plasma is a prerequisite for accurate estimation of the purification process efficiency. Although immunoglobulins from HHP have been purified for over a century, there is still no in vitro method for precise and accurate determination of IgG content in HHP. For this reason, the purification process efficiency has been assessed by antibody activity measurements, mostly performed in vivo. Here we describe the development of a precise and accurate in vitro immunoassay for IgG quantification in HHP. We showed and highlighted that any difference in composition of IgG population between the standard and the sample, with respect to both IgG subclass distribution and antigen-specific IgG content, leads to inaccurate IgG quantification. We demonstrated that caprylic acid precipitation as the method for IgG isolation from horse plasma renders the composition of IgG population unchanged. This very efficient, fast, simple and inexpensive method was used to prepare internal, sample-specific reference IgG for each plasma sample, which was tested simultaneously to a respective plasma sample. Deviation of IgG quantity determined by ELISA for each sample-specific reference from its nominal value was used for correction of the results of respective plasma sample, which led to accurate and precise IgG quantification as shown by method validation. The here presented novel concept of sample-specific correction of immunoassay results could be widely applicable and easily introduced in different immunoassays for more accurate and precise plasma IgG quantification.


Assuntos
Soros Imunes/análise , Imunoglobulina G/sangue , Animais , Caprilatos/química , Precipitação Química , Cromatografia em Gel/instrumentação , Cromatografia em Gel/métodos , Ensaio de Imunoadsorção Enzimática/instrumentação , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Feminino , Cavalos , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Masculino , Camundongos , Testes de Neutralização/instrumentação , Padrões de Referência
19.
PLoS Negl Trop Dis ; 13(6): e0007431, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31206512

RESUMO

Antivenoms from hyperimmune animal plasma are the only specific pharmaceuticals against snakebites. The improvement of downstream processing strategies is of great interest, not only in terms of purity profile, but also from yield-to-cost perspective and rational use of plasma of animal origin. We report on development of an efficient refinement strategy for F(ab')2-based antivenom preparation. Process design was driven by the imperative to keep the active principle constantly in solution as a precautionary measure to preserve stability of its conformation (precipitation of active principle or its adsorption to chromatographic stationary phase has been completely avoided). IgG was extracted from hyperimmune horse plasma by 2% (V/V) caprylic acid, depleted from traces of precipitating agent and digested by pepsin. Balance between incomplete IgG fraction breakdown, F(ab')2 over-digestion and loss of the active principle's protective efficacy was achieved by adjusting pepsin to substrate ratio at the value of 4:300 (w/w), setting pH to 3.2 and incubation period to 1.5 h. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. Developed manufacturing strategy gave 100% pure and aggregate-free F(ab')2 preparation, as shown by size-exclusion HPLC and confirmed by MS/MS. The overall yield of 75% or higher compares favorably to others so far reported. This optimised procedure looks also promising for large-scale production of therapeutic antivenoms, since high yield of the active drug and fulfillment of the regulatory demand considering purity was achieved. The recovery of the active substance was precisely determined in each purification step enabling accurate estimation of the process cost-effectiveness.


Assuntos
Antivenenos/imunologia , Antivenenos/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fatores Imunológicos/imunologia , Fatores Imunológicos/isolamento & purificação , Tecnologia Farmacêutica/métodos , Animais , Cavalos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA