Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Nanobiotechnology ; 22(1): 114, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493106

RESUMO

BACKGROUND: Rice bran a by-product of the rice milling process is currently underutilized. Recent studies have shown that plant-derived nanoparticles (pdNPs) can be mass-produced at a low cost and exhibit biological and therapeutic activities. Rice bran contains various anti-cancer compounds, including γ-oryzanol and γ-tocotrienol, and rice bran-derived nanoparticles (rbNPs) can be employed as novel therapeutic agents for cancer treatment. RESULTS: Koshihikari rice bran was suspended in water, and the suspension was centrifuged and filtered through a 0.45-µm-pore size syringe filter. The filtrate was ultracentrifuged, and the precipitates were suspended to obtain rbNPs. The rbNPs were negatively charged exosome-like nanoparticles with an average diameter of approximately 130 nm. The rbNPs exhibited cytotoxic activities against cancer cells but not against normal cells. The cytotoxic activity of rbNPs to murine colon adenocarcinoma colon26 cells was significantly greater than DOXIL® or other pdNPs. The rbNPs induced cell cycle arrest and apoptosis, and reduced the expression of proliferative proteins, including ß-catenin and cyclin D1. Intraperitoneal injections of rbNPs into mice bearing peritoneal dissemination of colon26 cells significantly suppressed tumor growth with no significant adverse effects. CONCLUSION: These results indicated that rbNPs are promising nanoparticles, hold significant potential for anti-cancer applications, and are expected to play a vital role in cancer treatment.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Oryza , Animais , Camundongos , Neoplasias do Colo/tratamento farmacológico , Antioxidantes/farmacologia , Antineoplásicos/farmacologia
2.
Pharm Res ; 40(4): 917-926, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36352200

RESUMO

PURPOSE: We recently reported that intratumoral injection of corn-derived nanoparticles (cNPs) affords anticancer activity in tumor-bearing mice. To increase their applicability in cancer therapy, we examined the tissue distribution of cNPs after intravenous injection in mice, modified their surface with polyethylene glycol (PEG) to improve tumor delivery, and examined tissue distribution and anticancer activity of PEG-cNPs in tumor-bearing mice. METHODS: N-(Carbonyl-methoxypolyethyleneglycol2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG) was added to cNPs by sonication to obtain PEG-cNPs, and the ratio of DSPE-PEG to cNPs was optimized by evaluating the modification efficiency. cNPs and PEG-cNPs were labeled with fluorescent dyes DiO or DiR, and their tissue distribution was subsequently examined after intravenous administration to mice. Finally, we determined the anticancer activity and toxicity of PEG-cNPs. RESULTS: No detectable fluorescence intensity was observed in mouse serum after intravenous DiR-cNP injection. DSPE-PEG was successfully modified into cNPs, and a PEG:cNPs ratio of 50 was determined as optimal for preparing PEG-cNPs, based on their size and zeta potential. DiO-PEG-cNPs exhibited significantly higher serum concentrations and lower liver accumulation than DiO-cNPs. Moreover, DiR-PEG-cNPs accumulated in tumor tissues of colon26 tumor-bearing mice. Repeated intravenous PEG-cNP injections significantly retarded tumor growth, with no significant hepatotoxicity or nephrotoxicity. CONCLUSION: Overall, these results indicate that controlling the tissue distribution of cNPs via PEG modification on their surface can be a valuable strategy for developing intravenously injectable cNPs for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Polietilenoglicóis , Zea mays , Fosfatidiletanolaminas
3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163272

RESUMO

Polypod-like structured nucleic acids (polypodnas), which are nanostructured DNAs, are useful for delivering cytosine-phosphate guanine oligodeoxynucleotides (CpG ODNs) to antigen-presenting cells (APCs) expressing Toll-like receptor 9 (TLR9) for immune stimulation. Lipid modification is another approach to deliver ODNs to lymph nodes, where TLR9-positive APCs are abundant, by binding to serum albumin. The combination of these two methods can be useful for delivering CpG ODNs to lymph nodes in vivo. In the present study, CpG1668, a phosphodiester-type CpG ODN, was modified with stearic acid (SA) to obtain SA-CpG1668. Tripodna, a polypodna with three pods, was selected as the nanostructured DNA. Tripodnas loaded with CpG1668 or SA-CpG1668 were obtained in high yields. SA-CpG1668/tripodna bound more efficiently to plasma proteins than CpG1668/tripodna and was more efficiently taken up by macrophage-like RAW264.7 cells than CpG1668/tripodna, whereas the levels of tumor necrosis factor-α released from the cells were comparable between the two. After subcutaneous injection into mice, SA-CpG1668/tripodna induced significantly higher interleukin (IL)-12 p40 production in the draining lymph nodes than SA-CpG1668 or CpG1668/tripodna, with reduced IL-6 levels in plasma. These results indicate that the combination of SA modification and nanostructurization is a useful approach for the targeted delivery of CpG ODNs to lymph nodes.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Nanoestruturas/química , Oligodesoxirribonucleotídeos/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , DNA/imunologia , Sistemas de Liberação de Medicamentos/métodos , Feminino , Imunização/métodos , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/uso terapêutico , Conformação de Ácido Nucleico/efeitos dos fármacos , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/metabolismo , Estudo de Prova de Conceito , Células RAW 264.7 , Ácidos Esteáricos/química
4.
Bioorg Med Chem ; 29: 115864, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223462

RESUMO

Oligodeoxynucleotide (ODN) containing a cytosine-phosphate-guanine (CpG) motif, or CpG ODN, is considered suitable for treating immune diseases, including allergies. Although the phosphorothioate modification is used to enhance the stability and immunostimulatory activity of CpG ODNs, it is associated with the risk of adverse effects. Construction of nanostructured DNA assemblies, such as tripod- and hexapod-like structured DNAs, tripodna and hexapodna, respectively, were also found to increase this activity. The chemical modification of nucleobases could be another approach for enhancing CpG ODN activity. Here, we examined whether chemically modified nucleobase substitutions can enhance CpG ODN activity by measuring tumor necrosis factor α (TNF-α) release after addition to murine macrophage-like RAW264.7 cells. First, the guanine at the 18th position of phosphodiester CpG 1668 was substituted with several chemically modified guanines, and then the various guanines were substituted. Among all tested substitutions, 15,18-thdG, in which two guanines outside the CpG motif were substituted with the 2-aminothieno[3,4-d]pyrimidine guanine mimic (thdG), was the most effective. Compared to 32P-CpG 1668, 32P-15,18-thdG was taken up more efficiently by the RAW264.7 cells. Then, 15,18-thdG was incorporated into tripodna and hexapodna. 15,18-thdG/tri- or hexapodna induced higher TNF-α release from the RAW264.7 cells than PO CpG 1668/tri- or hexapodna, respectively. These results indicate that the thdG substitution is a useful effective strategy for enhancing the immunostimulatory activity of CpG DNAs in both single stranded and DNA nanostructure forms.


Assuntos
Citosina/imunologia , DNA/imunologia , Guanina/imunologia , Nanoestruturas/química , Oligodesoxirribonucleotídeos/imunologia , Fosfatos/imunologia , Animais , Citosina/química , DNA/química , Guanina/química , Imunização , Camundongos , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Fosfatos/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/imunologia
5.
Biol Pharm Bull ; 44(8): 1029-1036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34334488

RESUMO

Cell-based therapy for disease treatment involves the transplantation of cells obtained either from self or others into relevant patients. While cells constituting the body tissues maintain homeostasis by performing remarkable functions through complicated cell-cell interactions, transplanted cells, which are generally cultured as a monolayer, are unable to recapitulate similar interactions in vivo. The regulation of cell-cell interactions can immensely increase the function and therapeutic effect of transplanted cells. This review aims to summarize the methods of regulating cell-cell interactions that could significantly increase the therapeutic effects of transplanted cells. The first method involves the generation of multicellular spheroids by three-dimensional cell culture. Spheroid formation greatly improved the survival and therapeutic effects of insulin-secreting cells in diabetic mice after transplantation. Moreover, mixed multicellular spheroids, composed of insulin-secreting cells and aorta endothelial cells or fibroblasts, were found to significantly improve insulin secretion. Secondly, adhesamine derivatives, which are low-molecular-weight compounds that accelerate cell adhesion and avoid anoikis and anchorage-dependent apoptosis, have been used to improve the survival of bone marrow-derived cells and significantly enhanced the therapeutic effects in a diabetic mouse model of delayed wound healing. Finally, the avidin-biotin complex method, a cell surface modification method, has been applied to endow tumor-homing mesenchymal stem cells with anti-tumor ability by modifying them with doxorubicin-encapsulated liposomes. The modified cells showed excellent effectiveness in cell-based cancer-targeting therapy. The discussed methods can be useful tools for advanced cell-based therapy, promising future clinical applications.


Assuntos
Células da Medula Óssea , Comunicação Celular , Terapia Baseada em Transplante de Células e Tecidos , Células Endoteliais , Fibroblastos , Células Secretoras de Insulina , Células-Tronco Mesenquimais , Animais , Avidina , Biotina , Sobrevivência Celular , Transplante de Células , Diabetes Mellitus/terapia , Humanos , Neoplasias/terapia , Piperazinas , Esferoides Celulares , Cicatrização
6.
Nanomedicine ; 34: 102386, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774131

RESUMO

Despite the efficient uptake of polypod-like nanostructured DNA, or polypodna, by macrophage-like RAW264.7 and other immune cells, the detailed mechanism has not been fully elucidated. Our previous study using HEK-Blue hTLR9 cells showed that transfection of macrophage scavenger receptor 1 (MSR1) increased the uptake of tetrapod-like structured DNA. Here, we investigated the involvement of MSR1 in the structure-dependent uptake of polypodna. Transfection of MSR1 to HEK-Blue hTLR9 cells pod number-dependently increased the uptake of polypodna, and its knockout in RAW264.7 cells reduced the uptake and subsequent cytokine release. To examine the binding of DNA with MSR1, biotinylated DNA added to RAW264.7 cells was cross-linked with cell surface proteins. Then, MSR1 cross-linked with polypodna, but not with single-stranded DNA. Similar results were obtained with murine primary immune cells. Taken together, MSR1 discriminates between simple and nanostructured DNAs and plays a dominant role in the efficient uptake of polypodna by immune cells.


Assuntos
DNA/metabolismo , Macrófagos/metabolismo , Nanoestruturas , Receptores Depuradores Classe A/metabolismo , Animais , Sistemas CRISPR-Cas , DNA/química , Sulfato de Dextrana/farmacologia , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Receptores Depuradores Classe A/genética , Transfecção
7.
Biol Pharm Bull ; 43(8): 1188-1195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741939

RESUMO

The immunostimulatory activity of unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) could be improved via delivery to immune cells expressing Toll-like receptor 9 (TLR9). Previously, we showed that the polypod-like structured nucleic acid (polypodna), a nanostructured DNA comprised of three or more ODNs, was an efficient system for the delivery of CpG ODNs to immune cells. Because some TLR9-positive immune cells express mannose receptors (MR), the uptake of polypodna by immune cells can be further increased by its modification with mannose. In this study, we selected the phosphodiester CpG ODN, ODN1668, which has a sequence identical to CpG1668, and a hexapodna, a polypodna with six pods, to design a hexapodna that harbored ODN1668 or the mannosylated CpG ODN (Man-ODN1668) synthesized via modification of the 5'-terminal of ODN1668 with a synthesized mannose motif. By mixing ODN1668 or Man-ODN1668 with the hexapodna, ODN1668/hexapodna and Man-ODN1668/hexapodna were successfully formed with high yields. However, Man-ODN1668/hexapodna was found to induce a greater tumor necrosis factor-α release from TLR9- and MR-positive mouse peritoneal macrophages and macrophage-like J774.1 cells than Man-ODN1668 or ODN1668/hexapodna. These results indicate that the combination of mannose modification and incorporation into nanostructured DNA is a useful approach for enhancing the immunostimulatory activity of CpG ODN.


Assuntos
Adjuvantes Imunológicos/síntese química , DNA/química , Nanoestruturas/química , Oligodesoxirribonucleotídeos/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Células Cultivadas , DNA/farmacocinética , Feminino , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/química , Fator de Necrose Tumoral alfa/biossíntese
8.
Chem Pharm Bull (Tokyo) ; 68(2): 129-132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009079

RESUMO

Efficient methods for delivery of antisense DNA or small interfering RNA (siRNA) are highly needed. Cationic materials, which are conventionally used for anionic oligonucleotide delivery, have several drawbacks, including aggregate formation, cytotoxicity and a low endosome escape efficiency. In this report a bio-reactive mask (i.e., disulfide unit) for cationic amino groups was introduced, and the mask was designed such that it was removed at the target cell surface. Insolubility and severe cellular toxicity caused by exposed cationic groups are avoided when using the mask. Moreover, the disulfide unit used to mask the cationic group enabled direct delivery of oligonucleotides to the cell cytosol. The molecular design reported is a promising approach for therapeutic applications.


Assuntos
DNA Antissenso/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Aminas/química , Animais , Cátions/química , DNA Antissenso/química , DNA Antissenso/genética , DNA Antissenso/farmacocinética , Dissulfetos/química , Inativação Gênica , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos ICR , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética , Transfecção/métodos
9.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744061

RESUMO

The regulation of transplanted cell proliferation and function is important to achieve safe cell-based therapies. We previously reported that the proliferation and function of transplanted cells, which expressed the herpes simplex virus thymidine kinase (HSVtk) suicide gene, could be controlled by ganciclovir (GCV) administration. However, there are some concerns regarding the use of GCV. It is reported that the inducible caspase-9 (iC9) gene, a human caspase-9-derived genetically engineered suicide gene, rapidly induces cell apoptosis in the presence of apoptosis inducers, such as AP20187. In this study, we used a combination of the iC9 gene and AP20187 to achieve rapid regulation of transplanted cell proliferation. Cells from the human mesenchymal stem cell line UE7T-13 were transfected with the iC9 gene to obtain UE7T-13/iC9 cells. AP20187 significantly reduced the number of UE7T-13/iC9 cells within 24 h in a concentration-dependent manner. This reduction was much faster than the reduction of HSVtk-expressing UE7T-13 cells induced by GCV addition. Subcutaneous AP20187 administration rapidly reduced the luminescence signal from NanoLuc luciferase (Nluc)-expressing UE7T-13/iC9 cells transplanted into mice. These results indicate that the combined use of the iC9 gene and AP20187 is effective in rapidly regulating transplanted cell proliferation.


Assuntos
Caspase 9/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Mesenquimais/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 9/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ganciclovir/farmacologia , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Nus , Simplexvirus/enzimologia , Simplexvirus/genética , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Timidina Quinase/genética , Proteínas Virais/genética
10.
Molecules ; 24(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621193

RESUMO

Click chemistry has great potential for use in binding between nucleic acids, lipids, proteins, and other molecules, and has been used in many research fields because of its beneficial characteristics, including high yield, high specificity, and simplicity. The recent development of copper-free and less cytotoxic click chemistry reactions has allowed for the application of click chemistry to the field of medicine. Moreover, metabolic glycoengineering allows for the direct modification of living cells with substrates for click chemistry either in vitro or in vivo. As such, click chemistry has become a powerful tool for cell transplantation and drug delivery. In this review, we describe some applications of click chemistry for cell engineering in cell transplantation and for drug delivery in the diagnosis and treatment of diseases.


Assuntos
Engenharia Celular/tendências , Transplante de Células/tendências , Química Click/tendências , Sistemas de Liberação de Medicamentos/tendências , Humanos , Engenharia Metabólica
11.
Am J Physiol Gastrointest Liver Physiol ; 315(1): G104-G116, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29565641

RESUMO

In this study, we investigated the role of transient receptor potential melastatin 2 (TRPM2), a nonselective cation channel abundantly expressed in inflammatory cells such as macrophages, in the development of postoperative ileus, a complication of abdominal surgery characterized by gastrointestinal dysmotility. In wild-type mice, we found that intestinal manipulation, a maneuver that elicits symptoms typical of postoperative ileus, delays the transit of fluorescein-labeled dextran, promotes the infiltration of CD68+ macrophages, Ly6B.2+ neutrophils, and MPO+ cells into intestinal muscles, boosts expression of IL-1ß, IL-6, TNF-α, iNOS, and CXCL2 in intestinal muscles and peritoneal macrophages, enhances phosphorylation of ERK and p38 MAPK in intestinal muscles, and amplifies IL-1ß, IL-6, TNF-α, iNOS, and CXCL2 expression in resident and thioglycolate-elicited peritoneal macrophages following exposure to lipopolysaccharide. Remarkably, TRPM2 deficiency completely blocks or diminishes these effects. Indeed, intestinal manipulation appears to activate TRPM2 in resident muscularis macrophages and elicits release of inflammatory cytokines and chemokines, which, in turn, promote infiltration of macrophages and neutrophils into the muscle, ultimately resulting in dysmotility. NEW & NOTEWORTHY Activation of transient receptor potential melastatin 2 (TRPM2) releases inflammatory cytokines and chemokines, which, in turn, promote the infiltration of inflammatory cells and macrophages into intestinal muscles, ultimately resulting in dysmotility. Thus TRPM2 is a promising target in treating dysmotility due to postoperative ileus, a complication of abdominal surgery.


Assuntos
Motilidade Gastrointestinal/imunologia , Íleus , Laparotomia/efeitos adversos , Complicações Pós-Operatórias/imunologia , Canais de Cátion TRPM/metabolismo , Animais , Quimiocina CXCL2/metabolismo , Modelos Animais de Doenças , Íleus/etiologia , Íleus/imunologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Músculo Liso/metabolismo , Neutrófilos/metabolismo , Canais de Cátion TRPC/metabolismo
12.
Mol Pharm ; 15(3): 1105-1111, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29338251

RESUMO

Oxytocin (OXT) is a cyclic nonapeptide, two amino acids of which are cysteine, forming an intramolecular disulfide bond. OXT is produced in the hypothalamus and is secreted into the bloodstream from the posterior pituitary. As recent studies have suggested that OXT is a neurotransmitter exhibiting central effects important for social deficits, it has drawn much attention as a drug candidate for the treatment of autism. Although human-stage clinical trials of the nasal spray of OXT for the treatment of autism have already begun, few studies have examined the pharmacokinetics and brain distribution of OXT after nasal application. The aim of this study is to evaluate the disposition, nasal absorption, and therapeutic potential of OXT after nasal administration. The pharmacokinetics of OXT after intravenous bolus injection to rats followed a two-compartment model, with a rapid initial half-life of 3 min. The nasal bioavailability of OXT was approximately 2%. The brain concentration of OXT after nasal application was much higher than that after intravenous application, despite much lower concentrations in the plasma. More than 95% of OXT in the brain was directly transported from the nasal cavity. The in vivo stress-relief effect by OXT was observed only after intranasal administration. These results indicate that pharmacologically active OXT was effectively delivered to the brain after intranasal administration. In conclusion, the nasal cavity is a promising route for the efficient delivery of OXT to the brain.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Encéfalo/metabolismo , Ocitocina/administração & dosagem , Estresse Psicológico/tratamento farmacológico , Administração Intranasal , Animais , Comportamento Animal/efeitos dos fármacos , Disponibilidade Biológica , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Injeções Intravenosas , Masculino , Camundongos , Ocitocina/farmacocinética , Ratos , Ratos Wistar , Resultado do Tratamento
13.
Biol Pharm Bull ; 41(12): 1769-1777, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30504679

RESUMO

We reported a novel transport mechanism of curcumin, independent of improved solubility, which involved direct contact of amorphous solid particles with the cell membrane. This mechanism has potential as a novel systemic delivery system of poorly water-soluble drugs. In this study, the transport mechanism of furosemide (FUR), which is transported by the same novel mechanism, was examined. In vitro cell permeation studies under air-interface conditions (AICs) revealed that the permeation from powders sprayed on cell monolayers was significantly higher than that under liquid-covered conditions (LCCs) from their solutions. The permeation from amorphous solid particles was faster than that from crystals. Similar results were derived from in vitro studies using an artificial membrane, with which the permeation of FUR could be examined without water. These findings clearly indicated that the transport mechanism of FUR is the same as that of curcumin. For the application of this new transport mechanism, the in vivo absorption of FUR was examined after pulmonary insufflation, which allows the solid particles to make direct contact with the epithelial cells. Pulmonary absorption of FUR from the amorphous powder was almost complete and was faster than that after intragastric administration of the solution, suggesting that FUR was absorbed from the lung by the same mechanism as the in vitro study. This new transport mechanism, which is independent of water dissolution, could be exploited to develop a novel delivery system for poorly water-soluble drugs, using pulmonary powder inhalation.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Furosemida/farmacocinética , Membranas Artificiais , Administração Oral , Animais , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Cães , Células Epiteliais/metabolismo , Furosemida/administração & dosagem , Furosemida/sangue , Furosemida/química , Infusões Intravenosas , Células Madin Darby de Rim Canino , Masculino , Pós , Ratos Wistar , Solubilidade , Propriedades de Superfície
14.
Biol Pharm Bull ; 40(12): 2175-2182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29199240

RESUMO

In this study, the effects of N-acyl taurates (NATs) on the intestinal absorption of curcumin (CUR), a water-insoluble and poorly absorbed compound, were examined in rats. Sodium methyl lauroyl taurate (LMT) and sodium methyl cocoyl taurate (CMT) were the most effective in increasing the solubility and intestinal absorption of CUR. The intestinal membrane toxicity of the NATs was also evaluated by measuring the activity of lactate dehydrogenase (LDH), a toxicity marker. NATs did not increase the activity of LDH, suggesting that they may be safely administered orally. We further elucidated the absorption-enhancing mechanisms of NATs by using Caco-2 cells. In cellular transport studies, LMT and CMT reduced the transepithelial electrical resistance value of Caco-2 cells and increased the transport of 5(6)-carboxyfluorescein and CUR. Hence, the intestinal absorption enhancement by LMT and CMT was attributed to the synergistic effect of higher solubility and greater permeability of the cell layer towards CUR in the presence of the surfactants. In summary, co-administration of CUR with either LMT or CMT is a simple and effective method to enhance oral delivery of CUR.


Assuntos
Curcumina/farmacologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Tensoativos/farmacologia , Taurina/análogos & derivados , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Curcuma/química , Curcumina/química , Sinergismo Farmacológico , Impedância Elétrica , Humanos , Mucosa Intestinal/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Ratos , Ratos Wistar , Solubilidade , Taurina/farmacologia
15.
Biol Pharm Bull ; 40(3): 334-338, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28250275

RESUMO

Multicellular spheroids are useful as three-dimensional cell culture systems and for cell-based therapies. Their successful application requires an understanding of the consequences of spheroid size for cellular functions. In the present study, we prepared multicellular spheroids of different sizes using the human hepatoblastoma HepG2 cells, as hepatocytes are frequently used for in vitro drug screening and cell-based therapy. Precise polydimethylsiloxane-based microwells with widths of 360, 450, 560, and 770 µm were fabricated using a micromolding technique. Incubation of HepG2 cells in cell culture plates containing the microwells resulted in the formation of HepG2 spheroids with average diameters of 195, 320, 493, and 548 µm. The cell number per spheroid positively correlated with its diameter, and the viability of HepG2 cells was 94% or above for all samples. The smallest HepG2 spheroids showed the highest albumin secretion. On the other hand, the metabolic activity of 7-ethoxyresorufin, a fluorometric substrate for CYP1A1, increased with increasing spheroid size. These results indicate that controlling spheroid size is important when preparing HepG2 spheroids and that the size of HepG2 spheroids greatly influences the cellular function of HepG2 cells in the spheroids.


Assuntos
Albuminas/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Fígado/citologia , Esferoides Celulares , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Dimetilpolisiloxanos , Células Hep G2 , Hepatoblastoma/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Modelos Biológicos , Oxazinas/metabolismo
16.
Biol Pharm Bull ; 40(2): 212-219, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28154262

RESUMO

The effect of changes in the mucosal fluid volume on the nasal drug absorption of powder formulations was evaluated using warfarin (WF), piroxicam (PXC), and norfloxacin (NFX) as model drugs. Lactose and sodium chloride (NaCl), which are water soluble and small-sized chemicals that increase osmotic pressure after dissolution, were used as excipients to change the mucosal fluid volume. The in vitro study using a Madin-Darby canine kidney (MDCK) cell monolayer indicated that lactose and NaCl, sprayed over the surface of air interface monolayers, increased the fluid volume on the monolayer surface and enhanced the transepithelial transport of the model drugs. The in vivo animal study indicated that the nasal absorption of PXC is enhanced by lactose and NaCl after nasal administration of the powder formulations. This is likely due to the enhanced dissolution of PXC on fluid-rich nasal mucosa and an increase in the effective surface area for drug permeation, which lead to better nasal absorption. However, both excipients failed to increase the nasal absorption of WF and NFX. To clarify the mechanism of the drug-dependent effect of lactose and NaCl, the nasal residence of the formulation was examined using FD70 as a non-absorbable marker. The nasal clearance of FD70 was enhanced by lactose and NaCl, leading to a decrease in the nasal drug absorption. Lactose and NaCl caused no damage to the nasal tissue. These results indicate that the addition of water-soluble excipients such as lactose to powder formulations can enhance the nasal absorption of highly permeable but poorly soluble drugs.


Assuntos
Excipientes/metabolismo , Absorção Nasal/fisiologia , Mucosa Nasal/metabolismo , Migração Transendotelial e Transepitelial/fisiologia , Administração Intranasal , Animais , Química Farmacêutica , Cães , Excipientes/administração & dosagem , Excipientes/química , Humanos , Células Madin Darby de Rim Canino , Masculino , Absorção Nasal/efeitos dos fármacos , Mucosa Nasal/efeitos dos fármacos , Pós , Ratos , Ratos Wistar , Migração Transendotelial e Transepitelial/efeitos dos fármacos
17.
AAPS PharmSciTech ; 18(4): 1203-1212, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27431914

RESUMO

Poorly water-soluble compounds have a potential risk of low and variable bioavailability caused by incomplete dissolution. Incorporation of organic acids as pH modifiers is effective method for solubility enhancement of basic compounds and requires no special technique and equipment. The purpose of this study was to evaluate the effect of manufacturing method on the extent of drug solubility enhancement. We successfully prepared the granules and tablets containing ketoconazole (KZ), which is weakly basic, as a model compound and citric acid as a pH modifier using conventional wet and dry granulations. KZ solubility under non-sink condition was enhanced with supersaturation using both wet and dry granulations. High-shear granulation was the most effective method in terms of KZ dissolution enhancement, because both an intimate contact and strong bonding between KZ and incorporated acid were achieved. KZ dissolved amount from the granules prepared by high-shear granulation was about eight times higher than that from the granules without the acid. The granulation involved to suppress a diffusion of acid dissolved, leading to the effectively maintained supersaturation state. The bioavailability of KZ after oral administration to rats was improved by applying high-shear granulation with citric acid independent of gastrointestinal pH. The granules prepared by high-shear granulation showed the bioavailability about 1.7-fold higher than that of the physical mixture in rats with and without neutralization of stomach. As a result, both the dissolution and absorption rates of KZ after oral administration were enhanced using conventional manufacturing technology.


Assuntos
Cetoconazol/farmacocinética , Absorção Fisiológica , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Cetoconazol/administração & dosagem , Cetoconazol/química , Ratos , Solubilidade , Comprimidos/química , Água/química
18.
Mol Pharm ; 13(1): 272-9, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26649921

RESUMO

The purpose of this study was to evaluate the characteristics of exendin-4 tip-loaded microneedle arrays and to compare their acute efficacy with subcutaneous injections in type 2 diabetic GK/Slc rats. Fluorescein isothiocyanate labeled dextran with an average molecular weight of 4,000 (FD4) was selected as a model drug, and FD4 tip-loaded microneedle arrays were prepared in this study. In addition, intraperitoneal glucose tolerance tests after application of exendin-4 tip-loaded microneedle arrays were also compared with those after subcutaneous injection in type 2 diabetic GK/Slc rats. The release of FD4 from the tip-loaded microneedle arrays was very rapid, particularly in the initial 30 s, and most of the FD4 was released within 5 min. In addition, glucose tolerance was improved and the insulin secretion was enhanced after application of exendin-4 tip-loaded microneedle arrays, and these effects were comparable to those after subcutaneous injection of exendin-4. Similar plasma concentration profiles were seen after application of exendin-4 tip-loaded microneedle arrays, as was the case with subcutaneous injection in type 2 diabetic GK/Slc rats. These findings indicate that exendin-4 tip-loaded microneedle arrays can be used as an alternative to achieve sufficient delivery of exendin-4 for treatment of type 2 diabetes. To our knowledge, this is the first report of transdermal exendin-4 delivery using tip-loaded microneedle arrays.


Assuntos
Administração Cutânea , Ácido Hialurônico/química , Peptídeos/administração & dosagem , Peptídeos/química , Peçonhas/administração & dosagem , Peçonhas/química , Animais , Exenatida , Masculino , Ratos , Ratos Wistar , Absorção Cutânea
19.
Mol Pharm ; 13(2): 493-9, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26656401

RESUMO

The amorphization has been generally known to improve the absorption and permeation of poorly water-soluble drugs through the enhancement of the solubility. The present study focused on the direct contact of amorphous solid particles with the surface of the membrane using curcumin as a model for water-insoluble drugs. Amorphous nanoparticles of curcumin (ANC) were prepared with antisolvent crystallization method using a microreactor. The solubility of curcumin from ANC was two orders of magnitude higher than that of crystalline curcumin (CC). However, the permeation of curcumin from the saturated solution of ANC was negligible. The transepithelial permeation of curcumin from ANC suspension was significantly increased as compared to CC suspension, while the permeation was unlikely correlated with the solubility, and the increase in the permeation was dependent on the total concentration of curcumin in ANC suspension. The absorptive transport of curcumin (from apical to basal, A to B) from ANC suspension was much higher than the secretory transport (from basal to apical, B to A). In vitro transport of curcumin through air-interface monolayers is large from ANC but negligible from CC particles. These findings suggest that the direct contact of ANC with the absorptive membrane can play an important role in the transport of curcumin from ANC suspension. The results of the study suggest that amorphous particles may be directly involved in the transepithlial permeation of curcumin.


Assuntos
Antineoplásicos/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Curcumina/química , Células Epiteliais/efeitos dos fármacos , Nanopartículas/química , Animais , Antineoplásicos/farmacologia , Química Farmacêutica , Curcumina/farmacologia , Cães , Células Madin Darby de Rim Canino , Solubilidade , Suspensões , Água
20.
Pharm Res ; 33(1): 247-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26337771

RESUMO

PURPOSE: We previously have shown that multicellular spheroids containing insulin-secreting cells are an effective therapy for diabetic mice. Here we attempted to increase insulin secretion by incorporating other cell types into spheroids. MATERIALS AND METHODS: Multicellular spheroids of mouse MIN6 pancreatic ß cells were formed in microwells alone and with aortic vascular endothelial MAEC cells or embryo fibroblast NIH3T3 cells. mRNA expression of insulin genes and insulin secretion of MIN6 cells in each spheroid were measured by real-time PCR and an insulin ELIZA kit. Moreover, collagen IV expression in each spheroid was analyzed by western blot. RESULTS: In all cases, uniformly sized (about 300 µm) multicellular spheroids were obtained. MAEC or NIH3T3 cell incorporation into MIN6 spheroids significantly increased mRNA expression of insulin genes and insulin secretion. In addition, collagen IV expression, which was reported to enhance insulin secretion from pancreatic ß cells, also increased in their spheroids. CONCLUSIONS: The formation of mixed multicellular spheroids containing collagen IV-expressing cells can improve the insulin secretion from insulin-secreting MIN6 cells, and mixed multicellular spheroids can be a potent therapeutic option for patients with type I diabetes mellitus.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Esferoides Celulares , Células 3T3 , Animais , Células Cultivadas , Colágeno Tipo IV/biossíntese , Células Endoteliais/metabolismo , Fibroblastos , Insulina/genética , Secreção de Insulina , Camundongos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA