Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 194(8): 948-960, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27104832

RESUMO

RATIONALE: Despite shared environmental exposures, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease are usually studied in isolation, and the presence of shared molecular mechanisms is unknown. OBJECTIVES: We applied an integrative genomic approach to identify convergent transcriptomic pathways in emphysema and IPF. METHODS: We defined the transcriptional repertoire of chronic obstructive pulmonary disease, IPF, or normal histology lungs using RNA-seq (n = 87). MEASUREMENTS AND MAIN RESULTS: Genes increased in both emphysema and IPF relative to control were enriched for the p53/hypoxia pathway, a finding confirmed in an independent cohort using both gene expression arrays and the nCounter Analysis System (n = 193). Immunohistochemistry confirmed overexpression of HIF1A, MDM2, and NFKBIB members of this pathway in tissues from patients with emphysema or IPF. Using reads aligned across splice junctions, we determined that alternative splicing of p53/hypoxia pathway-associated molecules NUMB and PDGFA occurred more frequently in IPF or emphysema compared with control and validated these findings by quantitative polymerase chain reaction and the nCounter Analysis System on an independent sample set (n = 193). Finally, by integrating parallel microRNA and mRNA-Seq data on the same samples, we identified MIR96 as a key novel regulatory hub in the p53/hypoxia gene-expression network and confirmed that modulation of MIR96 in vitro recapitulates the disease-associated gene-expression network. CONCLUSIONS: Our results suggest convergent transcriptional regulatory hubs in diseases as varied phenotypically as chronic obstructive pulmonary disease and IPF and suggest that these hubs may represent shared key responses of the lung to environmental stresses.


Assuntos
Redes Reguladoras de Genes/genética , Fibrose Pulmonar Idiopática/genética , Doença Pulmonar Obstrutiva Crônica/genética , Adulto , Enfisema/genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas I-kappa B/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
2.
Skelet Muscle ; 2(1): 10, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22676806

RESUMO

BACKGROUND: Despite the success of highly active antiretroviral therapy (HAART), HIV infected individuals remain at increased risk for frailty and declines in physical function that are more often observed in older uninfected individuals. This may reflect premature or accelerated muscle aging. METHODS: Skeletal muscle gene expression profiles were evaluated in three uninfected independent microarray datasets including young (19 to 29 years old), middle aged (40 to 45 years old) and older (65 to 85 years old) subjects, and a muscle dataset from HIV infected subjects (36 to 51 years old). Using Bayesian analysis, a ten gene muscle aging signature was identified that distinguished young from old uninfected muscle and included the senescence and cell cycle arrest gene p21/Cip1 (CDKN1A). This ten gene signature was then evaluated in muscle specimens from a cohort of middle aged (30 to 55 years old) HIV infected individuals. Expression of p21/Cip1 and related pathways were validated and further analyzed in a rodent model for HIV infection. RESULTS: We identify and replicate the expression of a set of muscle aging genes that were prematurely expressed in HIV infected, but not uninfected, middle aged subjects. We validated select genes in a rodent model of chronic HIV infection. Because the signature included p21/Cip1, a cell cycle arrest gene previously associated with muscle aging and fibrosis, we explored pathways related to senescence and fibrosis. In addition to p21/Cip1, we observed HIV associated upregulation of the senescence factor p16INK4a (CDKN2A) and fibrosis associated TGFß1, CTGF, COL1A1 and COL1A2. Fibrosis in muscle tissue was quantified based on collagen deposition and confirmed to be elevated in association with infection status. Fiber type composition was also measured and displayed a significant increase in slow twitch fibers associated with infection. CONCLUSIONS: The expression of genes associated with a muscle aging signature is prematurely upregulated in HIV infection, with a prominent role for fibrotic pathways. Based on these data, therapeutic interventions that promote muscle function and attenuate pro-fibrotic gene expression should be considered in future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA