Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nucleic Acids Res ; 49(11): 6082-6099, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34057477

RESUMO

Oligonucleotide-based therapeutics have the capacity to engage with nucleic acid immune sensors to activate or block their response, but a detailed understanding of these immunomodulatory effects is currently lacking. We recently showed that 2'-O-methyl (2'OMe) gapmer antisense oligonucleotides (ASOs) exhibited sequence-dependent inhibition of sensing by the RNA sensor Toll-Like Receptor (TLR) 7. Here we discovered that 2'OMe ASOs can also display sequence-dependent inhibitory effects on two major sensors of DNA, namely cyclic GMP-AMP synthase (cGAS) and TLR9. Through a screen of 80 2'OMe ASOs and sequence mutants, we characterized key features within the 20-mer ASOs regulating cGAS and TLR9 inhibition, and identified a highly potent cGAS inhibitor. Importantly, we show that the features of ASOs inhibiting TLR9 differ from those inhibiting cGAS, with only a few sequences inhibiting both pathways. Together with our previous studies, our work reveals a complex pattern of immunomodulation where 95% of the ASOs tested inhibited at least one of TLR7, TLR9 or cGAS by ≥30%, which may confound interpretation of their in vivo functions. Our studies constitute the broadest analysis of the immunomodulatory effect of 2'OMe ASOs on nucleic acid sensing to date and will support refinement of their therapeutic development.


Assuntos
Nucleotidiltransferases/antagonistas & inibidores , Oligonucleotídeos Antissenso/química , Receptor Toll-Like 9/antagonistas & inibidores , Adulto , Animais , Sequência de Bases , Células Cultivadas , DNA , Humanos , Camundongos , Transdução de Sinais , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 7 Toll-Like/antagonistas & inibidores
2.
Cytotherapy ; 24(6): 650-658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35248475

RESUMO

BACKGROUND: Cell viability is an important release criterion in the manufacturing of cell therapy products. Low cell viability can have significant impact on product quality and manufacturing efficiency. Counterflow centrifugation technology has been applied to the manufacturing of cell therapy products, to enable cell separation based on size and density. This study evaluated the utility of counterflow centrifugation technology for dead cell removal to improve cell viability of the final product. METHODS: Jurkat cell cultures with low and high dead cell burden were subjected to counterflow centrifugal elutriation to determine the correlation between process parameters (e.g., flow rate, centrifugal force) and processing outcomes (i.e., cell recovery and viability). Subsequently, the optimized parameters were applied to dead cell elutriation using expanded T cells and freshly isolated human amniotic epithelial cells (hAECs). The efficiency of dead cell removal, cell function and post-thaw viability were compared. RESULTS: Elutriation using a low flow rate allowed better control of viable cell recovery from both low and high dead cell burden cultures of Jurkat cells. The viability of T cells and hAECs was improved by counterflow centrifugal processing, from 80.67% ± 2.33 to 94.73% ± 1.19 and 79.19% ± 5.35 to 90.34% ± 3.59, respectively. Processing increased the proliferation rate of T cells, while the metabolic activity of hAECs was unchanged. CONCLUSION: Counterflow centrifugal elutriation can be added as an integrated step to the automated wash-and-concentrate protocol for cell manufacturing to remove dead cells and improve cell viability of the final product.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Separação Celular/métodos , Sobrevivência Celular , Centrifugação/métodos , Humanos
3.
Yale J Biol Med ; 95(1): 115-127, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35370491

RESUMO

Preeclampsia (PE) is a serious medically important disorder of human pregnancy, which features de novo pregnancy-induced hypertension and proteinuria. The severe form of PE can progress to eclampsia, a convulsive, life-threatening condition. When placental growth and perfusion are abnormal, the placenta experiences oxidative stress and subsequently secretes abnormal amounts of certain pro-angiogenic factors (eg, PlGF) as well as anti-angiogenic factors (eg, sFlt-1) that enter the maternal circulation. The net effect is damage to the maternal vascular endothelium, which subsequently manifests as the clinical features of PE. Other than delivery of the fetus and placenta, curative treatments for PE have not yet been forthcoming, which reflects the complexity of the clinical syndrome. A major source of reactive oxygen species that contributes to the widespread maternal vascular endothelium damage is the PE-affected decidua. The role of decidua-derived mesenchymal stem/stromal cells (MSC) in normotensive and pathological placenta development is poorly understood. The ability to respond to an environment of oxidative damage is a "universal property" of MSC but the biological mechanisms that MSC employ in response to oxidative stress are compromised in PE. In this review, we discuss how MSC respond to oxidative stress in normotensive and pathological conditions. We also consider the possibility of manipulating the oxidative stress response of abnormal MSC as a therapeutic strategy to treat preeclampsia.


Assuntos
Células-Tronco Mesenquimais , Pré-Eclâmpsia , Feminino , Humanos , Estresse Oxidativo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Espécies Reativas de Oxigênio/metabolismo
4.
Proteomics ; 21(13-14): e2000080, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34081834

RESUMO

The therapeutic properties of cell derived extracellular vesicles (EVs) make them promising cell-free alternative to regenerative medicine. However, clinical translation of this technology relies on the ability to manufacture EVs in a scalable, reproducible, and cGMP-compliant manner. To generate EVs in sufficient quantity, a critical step is the selection and development of culture media, where differences in formulation may influence the EV manufacturing process. In this study, we used human amniotic epithelial cells (hAECs) as a model system to explore the effect of different formulations of chemically defined, commercially sourced media on EV production. Here, we determined that cell viability and proliferation rate are not reliable quality indicators for EV manufacturing. The levels of tetraspanins and epitope makers of EVs were significantly impacted by culture media formulations. Mass spectrometry-based proteomic profiling revealed proteome composition of hAEC-EVs and the influence of media formulations on composition of EV proteome. This study has revealed critical aspects including cell viability and proliferation rate, EV yield, and tetraspanins, surface epitopes and proteome composition of EVs influenced by media formulations, and further insight into standardised EV production culture media that should be considered in clinical-grade scalable EV manufacture for generation of therapeutic EVs.


Assuntos
Vesículas Extracelulares , Proteômica , Meios de Cultura , Células Epiteliais , Humanos , Proteoma
5.
Cytotherapy ; 23(9): 774-786, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052112

RESUMO

The successful commercialization of cell therapies requires thorough planning and consideration of product quality, cost and scale of the manufacturing process. The implementation of automation can be central to a robust and reproducible manufacturing process at industrialized scales. There have been a number of wash-and-concentrate devices developed for cell manufacturing. These technologies have arisen from transfusion medicine, hematopoietic stem cell and biologics manufacturing where operating mechanisms are distinct from manual centrifugation. This review describes the historical origin and fundamental technologies underlying each currently available wash-and-concentrate device as well as their relative advantages and disadvantages in cell therapy applications. Understanding the specific attributes and limitations of these technologies is essential to optimizing cell therapy manufacturing.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Hematopoéticas , Automação , Centrifugação
6.
Clin Sci (Lond) ; 134(20): 2665-2679, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33000862

RESUMO

There is a growing appreciation of the role of lung stem/progenitor cells in the development and perpetuation of chronic lung disease including idiopathic pulmonary fibrosis. Human amniotic epithelial cells (hAECs) were previously shown to improve lung architecture in bleomycin-induced lung injury, with the further suggestion that hAECs obtained from term pregnancies possessed superior anti-fibrotic properties compared with their preterm counterparts. In the present study, we aimed to elucidate the differential effects of hAECs from term and preterm pregnancies on lung stem/progenitor cells involved in the repair. Here we showed that term hAECs were better able to activate bronchioalveolar stem cells (BASCs) and type 2 alveolar epithelial cells (AT2s) compared with preterm hAECs following bleomycin challenge. Further, we observed that term hAECs restored TGIF1 and TGFß2 expression levels, while increasing c-MYC expression despite an absence of significant changes to Wnt/ß-catenin signaling. In vitro, term hAECs increased the average size and numbers of BASC and AT2 colonies. The gene expression levels of Wnt ligands were higher in term hAECs, and the expression levels of BMP4, CCND1 and CDC42 were only increased in the BASC and AT2 organoids co-cultured with hAECs from term pregnancies but not preterm pregnancies. In conclusion, term hAECs were more efficient at activating the BASC niche compared with preterm hAECs. The impact of gestational age and/or complications leading to preterm delivery should be considered when applying hAECs and other gestational tissue-derived stem and stem-like cells therapeutically.


Assuntos
Âmnio/citologia , Células Epiteliais/citologia , Pulmão/fisiologia , Nascimento Prematuro/patologia , Regeneração , Células Epiteliais Alveolares/citologia , Animais , Bleomicina , Feminino , Imunofluorescência , Regulação da Expressão Gênica , Via de Sinalização Hippo , Humanos , Ligantes , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Organoides/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células-Tronco/citologia , Transcrição Gênica , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
7.
Acta Biomater ; 168: 144-158, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37422008

RESUMO

Mesenchymal stromal cells (MSCs) have significant therapeutic potential due to their ability to differentiate into musculoskeletal lineages suitable for tissue-engineering, as well as the immunomodulatory and pro-regenerative effects of the paracrine factors that these cells secrete. Cues from the extracellular environment, including physical stimuli such as substrate stiffness, are strong drivers of MSC differentiation, but their effects upon MSC paracrine activity are not well understood. This study, therefore sought to determine the impact of substrate stiffness on the paracrine activity of MSCs, analysing both effects on MSC fate and their effect on T-cell and macrophage activity and angiogenesis. The data show that conditioned medium (CM) from MSCs cultured on 0.2 kPa (soft) and 100 kPa (stiff) polyacrylamide hydrogels have differing effects on MSC proliferation and differentiation, with stiff CM promoting proliferation whilst soft CM promoted differentiation. There were also differences in the effects upon macrophage phagocytosis and angiogenesis, with the most beneficial effects from soft CM. Analysis of the media composition identified differences in the levels of proteins including IL-6, OPG, and TIMP-2. Using recombinant proteins and blocking antibodies, we confirmed a role for OPG in modulating MSC proliferation with a complex combination of factors involved in the regulation of MSC differentiation. Together the data confirm that the physical microenvironment has an important influence on the MSC secretome and that this can alter the differentiation and regenerative potential of the cells. These findings can be used to tailor the culture environment for manufacturing potent MSCs for specific clinical applications or to inform the design of biomaterials that enable the retention of MSC activity after delivery into the body. STATEMENT OF SIGNIFICANCE: • MSCs cultured on 100 kPa matrices produce a secretome that boosts MSC proliferation • MSCs cultured on 0.2 kPa matrices produce a secretome that promotes MSC osteogenesis and adipogenesis, as well as angiogenesis and macrophage phagocytosis • IL-6 secretion is elevated in MSCs on 0.2 kPa substrates • OPG, TIMP-2, MCP-1, and sTNFR1 secretion are elevated in MSCs on 100 kPa substrates.


Assuntos
Transplante de Células-Tronco Mesenquimais , Inibidor Tecidual de Metaloproteinase-2 , Inibidor Tecidual de Metaloproteinase-2/farmacologia , Interleucina-6 , Diferenciação Celular , Engenharia Tecidual , Meios de Cultivo Condicionados/farmacologia
8.
Stem Cell Res Ther ; 13(1): 196, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550006

RESUMO

BACKGROUND AND RATIONALE: Extracellular vesicles (EVs) are a potential cell-free regenerative medicine. Human amniotic epithelial cells (hAECs) are a viable source of cell therapy for diseases like bronchopulmonary dysplasia (BPD). However, little is known about the impact of gestational age of the donor on the quality of hAEC-derived EVs. AIMS: To determine the impact of gestational age on hAEC-derived EVs in experimental BPD. RESULTS: Term hAEC-derived EVs displayed a significantly higher density of surface epitopes (CD142 and CD133) and induced greater macrophage phagocytosis compared to preterm hAEC-EVs. However, T cell proliferation was more significantly suppressed by preterm hAEC-EVs. Using a model of experimental BPD, we observed that term but not preterm hAEC-EVs improved tissue-to-airspace ratio and septal crest density. While both term and preterm hAEC-EVs reduced the levels of inflammatory cytokines on postnatal day 7, the improvement in lung injury was associated with increased type II alveolar cells which was only observed in term hAEC-EV treatment group. Furthermore, only neonatal term hAEC-EVs reduced airway hyper-responsiveness, mitigated pulmonary hypertension and protected against right ventricular hypertrophy at 6 weeks of age. CONCLUSION: Term hAEC-EVs, but not preterm hAEC-EVs, have therapeutic efficacy in a mouse model of BPD-like lung injury. Therefore, the impact of donor criteria should be considered when applying perinatal cells-derived EV therapy for clinical use.


Assuntos
Displasia Broncopulmonar , Vesículas Extracelulares , Lesão Pulmonar , Animais , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/terapia , Células Epiteliais , Vesículas Extracelulares/metabolismo , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Lesão Pulmonar/terapia , Camundongos , Gravidez
9.
Front Cell Dev Biol ; 10: 819726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237601

RESUMO

Therapeutic benefits of mesenchymal stem cells (MSCs) are now widely believed to come from their paracrine signalling, i.e. secreted factors such as cytokines, chemokines, and extracellular vesicles (EVs). Cell-free therapy using EVs is an active and emerging field in regenerative medicine. Typical 2D cultures on tissue culture plastic is far removed from the physiological environment of MSCs. The application of 3D cell culture allows MSCs to adapt to their cellular environment which, in turn, influences their paracrine signalling activity. In this study we evaluated the impact of 3D MSCs culture on EVs secretion, cargo proteome composition, and functional assessment in immunomodulatory, anti-inflammatory and anti-fibrotic properties. MSC-EVs from 2D and 3D cultures expressed classical EV markers CD81, CD63, and CD9 with particle diameter of <100 nm. There were distinct changes in immunomodulatory potencies where 3D cultures exhibited reduced indoleamine 2,3-dioxygenase (IDO) activity and significantly reduced macrophage phagocytosis. Administration of 2D and 3D EVs following double dose bleomycin challenge in aged mice showed a marked increase of bodyweight loss in 3D group throughout days 7-28. Histopathological observations of lung tissues in 3D group showed increased collagen deposition, myofibroblast differentiation and leukocytes infiltrations. Assessment of lung mechanics showed 3D group did not improve lung function and instead exhibited increased resistance and tissue damping. Proteome profiling of MSC-EV composition revealed molecular enrichment of EV markers (compared to parental cells) and differential proteome between EVs from 2D and 3D culture condition associated with immune-based and fibrosis/extracellular matrix/membrane organization associated function. This study provides insight into distinct variation in EV protein composition dependent on the cellular microenvironment of the parental cells, which could have implications in their therapeutic effect and potency. Overall, this work suggests that EVs produced from 3D MSC cultures did not enhance typical MSC-EV properties expected from 2D cultures (immunomodulation, anti-fibrotic, anti-inflammatory). The outcome highlights critical differences between MSC-EVs obtained from different culture microenvironments, which should be considered when scaling up MSC culture for clinical manufacturing.

10.
J Extracell Vesicles ; 10(10): e12136, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34434533

RESUMO

Proliferation and survival of prostate cancer cells are driven by the androgen receptor (AR) upon binding to androgen steroid hormones. Manipulating the AR signalling axis is the focus for prostate cancer therapy; thus, it is crucial to understand the role of androgens and AR on extracellular vesicle (EV) secretion and cargo. In this study, we report that plasma-derived circulating vesicles consisting of CD9 and double-positive for CD9 and Prostate Specific Membrane Antigen (PSMA) are increased in patients with advanced metastatic prostate cancer, whereas double positives for CD9 and CD63 small extracellular vesicles (S-EVs) are significantly higher in patients with localised prostate cancer. Androgen manipulation by dihydrotestosterone (DHT) and the clinical antagonist enzalutamide (ENZ) altered the heterogeneity and size of CD9 positive S-EVs in AR expressing prostate cancer cells, while assessment of the total number and protein cargo of total S-EVs was unaltered across different treatment groups. Furthermore, hormone stimulation caused strong and specific effects on the small RNA cargo of S-EVs. A total of 543 small RNAs were found to be regulated by androgens including miR-19-3p and miR-361-5p. Analysis of S-EVs heterogeneity and small RNA cargo may provide clinical utility for prostate cancer and be informative to understand further the mechanism of resistance to androgen targeted therapy in castration-resistant prostate cancer.


Assuntos
Androgênios/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/fisiologia , MicroRNAs/metabolismo , Receptores Androgênicos/fisiologia , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Antígenos de Neoplasias/metabolismo , Antígenos de Superfície/metabolismo , Benzamidas/metabolismo , Benzamidas/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Di-Hidrotestosterona/farmacologia , Humanos , Calicreínas/metabolismo , Masculino , Nitrilas/metabolismo , Nitrilas/farmacologia , Feniltioidantoína/metabolismo , Feniltioidantoína/farmacologia , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata , Transdução de Sinais
11.
Methods Mol Biol ; 1710: 247-266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29197008

RESUMO

The decidua basalis and placental chorionic villi are critical components of maternal-fetal interface, which plays a critical role in normal placental development. Failure to form a proper maternal-fetal interface is associated with clinically important placental pathologies including preeclampsia and fetal growth restriction. Placental trophoblast cells are well known for their critical roles in establishing the maternal-fetal interface; however accumulating evidence also implicates mesenchymal stem/stromal cells that envelop the maternal and fetal blood vessels as playing an important role in the formation and efficient functioning of the interface. Moreover, recent studies associate abnormal mesenchymal stem/stromal cell function in the development of preeclampsia. Further research is needed to fully understand the role that these cells play in this clinically important placental pathology.The intimate relationship between maternal and fetal tissues at the interface poses significant problems in the enrichment of decidua basalis and chorionic villous mesenchymal stem/stromal cells without significant cross-contamination. The protocols described below for the enrichment and characterization of mesenchymal stem/stromal cells from the maternal-fetal interface produce highly enriched cells that conform to international standards and show minimal cross-contamination.


Assuntos
Separação Celular/métodos , Decídua/citologia , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Vilosidades Coriônicas/metabolismo , Decídua/metabolismo , Feminino , Citometria de Fluxo/métodos , Humanos , Hibridização in Situ Fluorescente/métodos , Células-Tronco Mesenquimais/metabolismo , Microscopia de Fluorescência/métodos , Placenta/metabolismo , Gravidez , Terceiro Trimestre da Gravidez
12.
Front Pharmacol ; 9: 1199, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420804

RESUMO

Extracellular vesicles (EVs)-based therapeutics are based on the premise that EVs shed by stem cells exert similar therapeutic effects and these have been proposed as an alternative to cell therapies. EV-mediated delivery is an effective and efficient system of cell-to-cell communication which can confer therapeutic benefits to their target cells. EVs have been shown to promote tissue repair and regeneration in various animal models such as, wound healing, cardiac ischemia, diabetes, lung fibrosis, kidney injury, and many others. Given the unique attributes of EVs, considerable thought must be given to the preservation, formulation and cold chain strategies in order to effectively translate exciting preclinical observations to clinical and commercial success. This review summarizes current understanding around EV preservation, challenges in maintaining EV quality, and also bioengineering advances aimed at enhancing the long-term stability of EVs.

13.
ACS Biomater Sci Eng ; 4(5): 1760-1769, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445333

RESUMO

Decellularized extracellular matrixes (dECM) derived from mesenchymal stem cell (MSC) cultures have recently emerged as cell culture substrates that improve the proliferation, differentiation, and maintenance of MSC phenotype during ex vivo expansion. These biomaterials have considerable potential in the fields of stem cell biology, tissue engineering, and regenerative medicine. Processing the dECMs into concentrated solutions of biomolecules that enable the useful properties of the native dECM to be transferred to a new surface via a simple adsorption step would greatly increase the usefulness and impact of this technology. The development of such solutions, hereafter referred to as transferable matrixes, is the focus of this article. In this work, we produced transferable matrixes from dECM derived from two human placental MSC cell lines (DMSC23 and CMSC29) using pepsin digestion (P-ECM), urea extraction (U-ECM), and mechanical homogenization in acetic acid (AA-ECM). Native dECMs improved primary DMSC proliferation as well as osteogenic and adipogenic differentiation, compared with traditional expansion procedures. Interestingly, tissue culture plastic coated with P-ECM was able to replicate the proliferative effects of native dECM, while U-ECM was able to replicate osteogenic differentiation. These data illustrate the feasibility of producing dECM-derived transferable matrixes that replicate key features of the native matrixes and show that different processing techniques produce transferable matrixes with varying bioactivities. Additionally, these transferable matrixes are able to coat 1.3-5.2 times the surface area covered by the native dECM, facilitating scale-up of this technology.

14.
Nat Commun ; 9(1): 257, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343687

RESUMO

Mechanotransduction is a strong driver of mesenchymal stem cell (MSC) fate. In vitro, variations in matrix mechanics invoke changes in MSC proliferation, migration and differentiation. However, when incorporating MSCs within injectable, inherently soft hydrogels, this dominance over MSC response substantially limits our ability to couple the ease of application of hydrogels with efficiently directed MSC differentiation, especially in the case of bone generation. Here, we identify differential miRNA expression in response to varying hydrogel stiffness and RhoA activity. We show that modulation of miR-100-5p and miR-143-3p can be used to bias MSC fate and provide mechanistic insight by demonstrating convergence on mTOR signalling. By modulating these mechanosensitive miRNAs, we can enhance osteogenesis in a soft 3D hydrogel. The outcomes of this study provide new understanding of the mechanisms regulating MSC mechanotransduction and differentiation, but also a novel strategy with which to drive MSC fate and significantly impact MSC-based tissue-engineering applications.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Hidrogéis/metabolismo , Mecanotransdução Celular , Células-Tronco Mesenquimais/citologia , Microscopia Confocal , Osteogênese/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Engenharia Tecidual/métodos
15.
Stem Cells Dev ; 26(9): 617-631, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28186467

RESUMO

Cues from the extracellular environment, including physical stimuli, are well known to affect mesenchymal stem cell (MSC) properties in terms of proliferation and differentiation. Many therapeutic strategies are now targeting this knowledge to increase the efficacy of cell therapies, typically employed to repair tissue functions in the event of injury, either by direct engraftment into the target tissue or differentiation into mature tissues. However, it is now envisioned that harnessing the repertoire of factors secreted by MSCs (termed the secretome) may provide an alternate to these cell therapies. Of current interest are both direct protein secretions and two major subpopulations of bioactive extracellular vesicles (EVs), namely exosomes and microvesicles. EVs released by MSCs are reflective of their cells of origin, able to impact upon the activities of other cells in the local microenvironment, making the rational design of MSC paracrine activities an encouraging strategy to reproducibly modulate cell therapies. The precise mechanisms by which the secretome is modulated by the microenvironment, however, remain elusive. Controlling MSC growth conditions with oxygen tension, growth factor composition, and mechanical properties may serve to directly influence paracrine activity. Our growing understanding implicates components of the mechanotransduction machinery in translating both mechanical and chemical cues from the environment into alterations in gene regulation and varied paracrine activity. As technologies are developed to manufacture MSCs, advances in bioengineering and novel insight of how the extracellular environment affects MSC paracrine activity will play a pivotal role in the generation of widespread, successful, clinical MSC therapies.


Assuntos
Microambiente Celular , Mecanotransdução Celular , Células-Tronco Mesenquimais/citologia , Comunicação Parácrina , Diferenciação Celular , Proliferação de Células , Vesículas Extracelulares/metabolismo , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual/métodos
16.
PLoS One ; 12(2): e0171488, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152107

RESUMO

Mesenchymal stem/stromal cells (MSCs) exhibit undesired phenotypic changes during ex vivo expansion, limiting production of the large quantities of high quality primary MSCs needed for both basic research and cell therapies. Primary MSCs retain many desired MSC properties including proliferative capacity and differentiation potential when expanded on decellularized extracellular matrix (dECM) prepared from primary MSCs. However, the need to use low passage number primary MSCs (passage 3 or lower) to produce the dECM drastically limits the utility and impact of this technology. Here, we report that primary MSCs expanded on dECM prepared from high passage number (passage 25) human telomerase reverse transcriptase (hTERT) transduced immortal MSC cell lines also exhibit increased proliferation and osteogenic differentiation. Two hTERT-transduced placenta-derived MSC cell lines, CMSC29 and DMSC23 [derived from placental chorionic villi (CMSCs) and decidua basalis (DMSCs), respectively], were used to prepare dECM-coated substrates. These dECM substrates showed structural and biochemical differences. Primary DMSCs cultured on dECM-DMSC23 showed a three-fold increase in cell number after 14 days expansion in culture and increased osteogenic differentiation compared with controls. Primary CMSCs cultured on the dECM-DMSC23 exhibited a two-fold increase in cell number and increased osteogenic differentiation. We conclude that immortal MSC cell lines derived from different parts of the placenta produce dECM with varying abilities for supporting increased primary MSC expansion while maintaining important primary MSC properties. Additionally, this is the first demonstration of using high passage number cells to produce dECM that can promote primary MSC expansion, and this advancement greatly increases the feasibility and applicability of dECM-based technologies.


Assuntos
Matriz Extracelular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Placenta/citologia , Linhagem Celular , Vilosidades Coriônicas/fisiologia , Decídua/citologia , Decídua/fisiologia , Eletroforese em Gel de Poliacrilamida , Feminino , Imunofluorescência , Humanos , Placenta/fisiologia , Gravidez , Telomerase/metabolismo , Trofoblastos/citologia , Trofoblastos/fisiologia
17.
Sci Rep ; 7: 42397, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28205523

RESUMO

High resistance to oxidative stress is a common feature of mesenchymal stem/stromal cells (MSC) and is associated with higher cell survival and ability to respond to oxidative damage. Aldehyde dehydrogenase (ALDH) activity is a candidate "universal" marker for stem cells. ALDH expression was significantly lower in decidual MSC (DMSC) isolated from preeclamptic (PE) patients. ALDH gene knockdown by siRNA transfection was performed to create a cell culture model of the reduced ALDH expression detected in PE-DMSC. We showed that ALDH activity in DMSC is associated with resistance to hydrogen peroxide (H2O2)-induced toxicity. Our data provide evidence that ALDH expression in DMSC is required for cellular resistance to oxidative stress. Furthermore, candidate ALDH activators were screened and two of the compounds were effective in upregulating ALDH expression. This study provides a proof-of-principle that the restoration of ALDH activity in diseased MSC is a rational basis for a therapeutic strategy to improve MSC resistance to cytotoxic damage.


Assuntos
Aldeído Desidrogenase/metabolismo , Decídua/enzimologia , Células-Tronco Mesenquimais/metabolismo , Pré-Eclâmpsia/enzimologia , Adulto , Aldeído Desidrogenase/genética , Proliferação de Células , Células Cultivadas , Citoproteção , Decídua/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Estresse Oxidativo , Pré-Eclâmpsia/patologia , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes
18.
Stem Cell Rev Rep ; 12(3): 285-97, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26880140

RESUMO

The use of mesenchymal stem/stromal cells (MSC) in regenerative medicine often requires MSC to function in environments of high oxidative stress. Human pregnancy is a condition where the mother's tissues, and in particular her circulatory system, are exposed to increased levels of oxidative stress. MSC in the maternal decidua basalis (DMSC) are in a vascular niche, and thus would be exposed to oxidative stress products in the maternal circulation. Aldehyde dehydrogenases (ALDH) are a large family of enzymes which detoxify aldehydes and thereby protect stem cells against oxidative damage. A subpopulation of MSC express high levels of ALDH (ALDH(br)) and these are more potent in repairing and regenerating tissues. DMSC was compared with chorionic villous MSC (CMSC) derived from the human placenta. CMSC reside in vascular niche and are exposed to the fetal circulation, which is in lower oxidative state. We screened an ALDH isozyme cDNA array and determined that relative to CMSC, DMSC expressed high levels of ALDH1 family members, predominantly ALDH1A1. Immunocytochemistry gave qualitative confirmation at the protein level. Immunofluorescence detected ALDH1 immunoreactivity in the DMSC and CMSC vascular niche. The percentage of ALDH(br) cells was calculated by Aldefluor assay and DMSC showed a significantly higher percentage of ALDH(br) cells than CMSC. Finally, flow sorted ALDH(br) cells were functionally potent in colony forming unit assays. DMSC, which are derived from pregnancy tissues that are naturally exposed to high levels of oxidative stress, may be better candidates for regenerative therapies where MSC must function in high oxidative stress environments.


Assuntos
Aldeído Desidrogenase/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Estresse Oxidativo/fisiologia , Placenta/metabolismo , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Diferenciação Celular/fisiologia , Ensaio de Unidades Formadoras de Colônias/métodos , Feminino , Citometria de Fluxo/métodos , Humanos , Placenta/fisiologia , Gravidez , Regeneração/fisiologia
19.
Placenta ; 39: 134-46, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26992686

RESUMO

INTRODUCTION: Human placental mesenchymal stem/stromal cells (MSC) are an attractive source of MSC with great therapeutic potential. However, primary MSC are difficult to study in vitro due to their limited lifespan and patient-to-patient variation. METHODS: Fetal and maternal MSC were prepared from cells of the chorionic and basal plates of the placenta, respectively. Fetal and maternal MSC were transduced with the human telomerase reverse transcriptase (hTERT). Conventional stem cell assays assessed the MSC characteristics of the cell lines. Functional assays for cell proliferation, cell migration and ability to form colonies in soft agar were used to assess the whether transduced cells retained properties of primary MSC. RESULTS: Fetal chorionic and maternal MSC were successfully transduced with hTERT to create the cell lines CMSC29 and DMSC23 respectively. The lifespans of CMSC29 and DMSC23 were extended in cell culture. Both cell lines retained important MSC characteristics including cell surface marker expression and multipotent differentiation potential. Neither of the cell lines was tumourigenic in vitro. Gene expression differences were observed between CMSC29 and DMSC23 cells and their corresponding parent, primary MSC. Both cell lines show similar migration potential to their corresponding primary, parent MSC. DISCUSSION: The data show that transduced MSC retained important functional properties of the primary MSC. There were gene expression and functional differences between cell lines CMSC29 and DMSC23 that reflect their different tissue microenvironments of the parent, primary MSC. CMSC29 and DMSC23 cell lines could be useful tools for optimisation and functional studies of MSC.


Assuntos
Feto/citologia , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Cultura Primária de Células/métodos , Separação Celular/métodos , Células Cultivadas , Córion/citologia , Feminino , Humanos , Gravidez , Telomerase/genética , Nascimento a Termo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA