Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928275

RESUMO

All-trans retinoic acid (ATRA), the major active metabolite of all-trans retinol (vitamin A), is a key hormonal signaling molecule. In the adult organism, ATRA has a widespread influence on processes that are crucial to the growth and differentiation of cells and, in turn, the acquisition of mature cell functions. Therefore, there is considerable potential in the use of retinoids to treat diseases. ATRA binds to the retinoic acid receptors (RAR) which, as activated by ATRA, selectively regulate gene expression. There are three main RAR isoforms, RARα, RARß, and RARγ. They each have a distinct role, for example, RARα and RARγ regulate myeloid progenitor cell differentiation and hematopoietic stem cell maintenance, respectively. Hence, targeting an isoform is crucial to developing retinoid-based therapeutics. In principle, this is exemplified when ATRA is used to treat acute promyelocytic leukemia (PML) and target RARα within PML-RARα oncogenic fusion protein. ATRA with arsenic trioxide has provided a cure for the once highly fatal leukemia. Recent in vitro and in vivo studies of RARγ have revealed the potential use of agonists and antagonists to treat diseases as diverse as cancer, heterotopic ossification, psoriasis, and acne. During the final drug development there may be a need to design newer compounds with added modifications to improve solubility, pharmacokinetics, or potency. At the same time, it is important to retain isotype specificity and activity. Examination of the molecular interactions between RARγ agonists and the ligand binding domain of RARγ has revealed aspects to ligand binding that are crucial to RARγ selectivity and compound activity and key to designing newer compounds.


Assuntos
Receptores do Ácido Retinoico , Receptor gama de Ácido Retinoico , Humanos , Receptores do Ácido Retinoico/metabolismo , Receptores do Ácido Retinoico/agonistas , Animais , Tretinoína/farmacologia , Ligação Proteica , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928329

RESUMO

Vitamin D is a group of seco-steroidal fat-soluble compounds. The two basic forms, vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol), do not have biological activity. They are converted in the body by a two-step enzymatic hydroxylation into biologically active forms, 1α,25-dihydroxyvitamin D2 [ercalcitriol, 1,25(OH)2D2] and 1α,25-dihydroxyvitamin D3 [calcitriol, 1,25(OH)2D3], which act as classical steroid hormones. 1,25(OH)2D3 exerts most of its physiological functions by binding to the nuclear vitamin D receptor (VDR), which is present in most body tissues to provide support to a broad range of physiological processes. Vitamin D-liganded VDR controls the expression of many genes. High levels of 1,25(OH)2D3 cause an increase in calcium in the blood, which can lead to harmful hypercalcemia. Several analogs of 1,25(OH)2D3 and 1,25(OH)2D2 have been designed and synthesized with the aim of developing compounds that have a specific therapeutic function, for example, with potent anticancer activity and a reduced toxic calcemic effect. Particular structural modifications to vitamin D analogs have led to increased anticancer activity and reduced calcemic action with the prospect of extending work to provide future innovative therapies.


Assuntos
Antineoplásicos , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/agonistas , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Calcitriol/farmacologia , Calcitriol/análogos & derivados , Calcitriol/química , Relação Estrutura-Atividade , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Vitamina D/química
3.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982694

RESUMO

The highly successful previous Volume 1 [...].


Assuntos
Portadores de Fármacos
4.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446718

RESUMO

Nonaqueous capillary electrophoretic (NACE) separation was obtained of analogs of (24R)-1,24-dihydroxyvitamin D3 derivative (calcipotriol) as predicted by quantum chemical calculations supported by the density functional theory (DFT). Among the key electronic properties investigated, absolute values of the dipole polarizability and energy gap between HOMO and LUMO molecular orbitals of the analog molecules differ significantly for particular analogs, and there is a direct relationship with their electrophoretic migration time. These differences and relationships suggest that the structurally related analogs should be separable in the electrostatic field. Indeed, the robust, sensitive, and rapid NACE method was first developed for the identification and determination of the anticancer analog of calcipotriol (coded PRI-2205) and its process-related impurities (coded PRI-2201, PRI-2203, and PRI-2204) in organic and aqueous biological solutions. The direct relation between the calculated electronic properties of the analogs and the experimental electrophoretic migration time could be a promising prospect for theoretically predicting the electrophoretic separations.


Assuntos
Di-Hidroxicolecalciferóis , Eletroforese Capilar , Di-Hidroxicolecalciferóis/isolamento & purificação
5.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743075

RESUMO

At present, there is a strong need for new therapies that are effective and safe for widespread diseases [...].


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos
6.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887195

RESUMO

The microsomal cytochrome P450 3A4 (CYP3A4) and mitochondrial cytochrome P450 24A1 (CYP24A1) hydroxylating enzymes both metabolize vitamin D and its analogs. The three-dimensional (3D) structure of the full-length native human CYP3A4 has been solved, but the respective structure of the main vitamin D hydroxylating CYP24A1 enzyme is unknown. The structures of recombinant CYP24A1 enzymes have been solved; however, from studies of the vitamin D receptor, the use of a truncated protein for docking studies of ligands led to incorrect results. As the structure of the native CYP3A4 protein is known, we performed rigid docking supported by molecular dynamic simulation using CYP3A4 to predict the metabolic conversion of analogs of 1,25-dihydroxyvitamin D2 (1,25D2). This is highly important to the design of novel vitamin D-based drug candidates of reasonable metabolic stability as CYP3A4 metabolizes ca. 50% of the drug substances. The use of the 3D structure data of human CYP3A4 has allowed us to explain the substantial differences in the metabolic conversion of the side-chain geometric analogs of 1,25D2. The calculated free enthalpy of the binding of an analog of 1,25D2 to CYP3A4 agreed with the experimentally observed conversion of the analog by CYP24A1. The metabolic conversion of an analog of 1,25D2 to the main vitamin D hydroxylating enzyme CYP24A1, of unknown 3D structure, can be explained by the binding strength of the analog to the known 3D structure of the CYP3A4 enzyme.


Assuntos
Esteroide Hidroxilases , Vitamina D , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Esteroide Hidroxilases/metabolismo , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilase/metabolismo
7.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563410

RESUMO

Non-coding micro-RNA (miRNAs) regulate the protein expression responsible for cell growth and proliferation. miRNAs also play a role in a cancer cells' response to drug treatment. Knowing that leukemia and lymphoma cells show different responses to active forms of vitamin D3, we decided to investigate the role of selected miRNA molecules and regulated proteins, analyzing if there is a correlation between the selected miRNAs and regulated proteins in response to two active forms of vitamin D3, calcitriol and tacalcitol. A total of nine human cell lines were analyzed: five leukemias: MV-4-1, Thp-1, HL-60, K562, and KG-1; and four lymphomas: Raji, Daudi, Jurkat, and U2932. We selected five miRNA molecules-miR-27b, miR-32, miR-125b, miR-181a, and miR-181b-and the proteins regulated by these molecules, namely, CYP24A1, Bak1, Bim, p21, p27, p53, and NF-kB. The results showed that the level of selected miRNAs correlates with the level of proteins, especially p27, Bak1, NFκB, and CYP24A1, and miR-27b and miR-125b could be responsible for the anticancer activity of active forms of vitamin D3 in human leukemia and lymphoma.


Assuntos
Colecalciferol , Leucemia , Linfoma , MicroRNAs , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/metabolismo , Proliferação de Células , Colecalciferol/farmacologia , Humanos , Leucemia/genética , Leucemia/metabolismo , Linfoma/genética , Linfoma/metabolismo , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Vitamina D3 24-Hidroxilase
8.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335121

RESUMO

Vitamins D are a group of fat-soluble secosteroids which play a regulatory role in the functioning of most cells. Rational design of new vitamin D analogs, of increased therapeutic potency and lowered calcemic side effects, requires high-resolution initial structures and a deep understanding of interactions with the molecular targets. In this paper, using quantum crystallography, we present the first determination of the experimental quantitative charge density of an advanced intermediate of vitamin D analogues as well as a reconstruction of the theoretical electron density of final vitamin D analogues. Application of these methods allows for topological and electrostatic interaction energy analysis. We showed that the A-ring chair conformation has a significant influence on the topological properties of vitamin D compounds. Moreover, the interactions between the CD-ring and side-chain additionally stabilize the crystal structure. These results are supported by our theoretical calculations and previous biological studies.


Assuntos
Receptores de Calcitriol , Vitamina D , Colecalciferol , Conformação Molecular , Vitaminas
9.
Int J Mol Sci ; 22(5)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652978

RESUMO

Plant polyphenols and vitamins D exhibit chemopreventive and therapeutic anticancer effects. We first evaluated the biological effects of the plant polyphenol resveratrol (RESV) and vitamin D active metabolite PRI-2191 on lung cancer cells having different genetic backgrounds. RESV and PRI-2191 showed divergent responses depending on the genetic profile of cells. Antiproliferative activity of PRI-2191 was noticeable in EGFRmut cells, while RESV showed the highest antiproliferative and caspase-3-inducing activity in KRASmut cells. RESV upregulated p53 expression in wtp53 cells, while downregulated it in mutp53 cells with simultaneous upregulation of p21 expression in both cases. The effect of PRI-2191 on the induction of CYP24A1 expression was enhanced by RESV in two KRASmut cell lines. The effect of RESV combined with PRI-2191 on cytokine production was pronounced and modulated. RESV cooperated with PRI-2191 in regulating the expression of IL-8 in EGFRmut cells, while OPN in KRASmut cells and PD-L1 in both cell subtypes. We hypothesize that the differences in response to RESV and PRI-2191 between EGFRmut and KRASmut cell lines result from the differences in epigenetic modifications since both cell subtypes are associated with the divergent smoking history that can induce epigenetic alterations.


Assuntos
Antineoplásicos/farmacologia , Di-Hidroxicolecalciferóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Resveratrol/farmacologia , Vitaminas/farmacologia , Antioxidantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Mutação/efeitos dos fármacos
10.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803480

RESUMO

1,25-Dihydroxycholecalciferol, the hormonally active vitamin D3 metabolite, is known to exhibit therapeutic effects against breast cancer, mainly by lowering the expression of estrogen receptors and aromatase activity. Previously, the safety of the vitamin D active metabolite (24R)-1,24-dihydroxycholecalciferol (PRI-2191) and 1,25(OH)2D3 analog PRI-2205 was tested, and the in vitro activity of these analogs against different cancer cell lines was studied. We determined the effect of the two vitamin D compounds on anastrozole (An) activity against breast cancer based on antiproliferative activity, ELISA, flow cytometry, enzyme inhibition potency, PCR, and xenograft study. Both the vitamin D active metabolite and synthetic analog regulated the growth of not only estrogen receptor-positive cells (T47D and MCF-7, in vitro and in vivo), but also hormone-independent cancer cells such as SKBR-3 (HER-2-positive) and MDA-MB-231 (triple-negative), despite their relatively low VDR expression. Combined with An, PRI-2191 and PRI-2205 significantly inhibited the tumor growth of MCF-7 cells. Potentiation of the antitumor activity in combined treatment of MCF-7 tumor-bearing mice is related to the reduced activity of aromatase by both An (enzyme inhibition) and vitamin D compounds (switched off/decreased aromatase gene expression, decreased expression of other genes related to estrogen signaling) and by regulation of the expression of the estrogen receptor ERα and VDR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Anastrozol/agonistas , Anastrozol/farmacologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Di-Hidroxicolecalciferóis/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008598

RESUMO

BACKGROUND: Ovarian cancer (OC) is one of the most lethal cancers in women. The active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25D3, calcitriol) has anticancer activity in several cancers, including ovarian cancer, but the required pharmacological doses may cause hypercalcemia. We hypothesized that newly developed, low calcemic, vitamin D analogs (an1,25Ds) may be used as anticancer agents instead of calcitriol in ovarian cancer cells. METHODS: We used two patient-derived high-grade serous ovarian cancer (HGSOC) cell lines with low (13781) and high (14433) mRNA expression levels of the gene encoding 1,25-dihydroxyvitamin D3 24-hydroxylase CYP24A1, one of the main target genes of calcitriol. We tested the effect of calcitriol and four structurally related series of an1,25Ds (PRI-1906, PRI-1907, PRI-5201, PRI-5202) on cell number, viability, the expression of CYP24A1, and the vitamin D receptor (VDR). RESULTS: CYP24A1 mRNA expression increased in a concentration-dependent manner after treatment with all compounds. In both cell lines, after 4 h, PRI-5202 was the most potent analog (in 13781 cells: EC50 = 2.98 ± 1.10 nmol/L, in 14433 cells: EC50 = 0.92 ± 0.20 nmol/L), while PRI-1907 was the least active one (in 13781 cells: EC50 = n/d, in 14433 cells: EC50 = n/d). This difference among the analogs disappeared after 5 days of treatment. The 13781 cells were more sensitive to the an1,25Ds compared with 14433 cells. The an1,25Ds increased nuclear VDR levels and reduced cell viability, but only in the 13781 cell line. CONCLUSIONS: The an1,25Ds had different potencies in the HGSOC cell lines and their efficacy in increasing CYP24A1 expression was cell line- and chemical structure-dependent. Therefore, choosing sensitive cancer cell lines and further optimization of the analogs' structure might lead to new treatment options against ovarian cancer.


Assuntos
Sobrevivência Celular , Neoplasias Ovarianas/tratamento farmacológico , Receptores de Calcitriol/genética , Vitamina D3 24-Hidroxilase/genética , Vitamina D/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Ergocalciferóis/metabolismo , Ergocalciferóis/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/metabolismo , Vitamina D/análogos & derivados
12.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963716

RESUMO

Experimental data indicate that low-calcemic vitamin D derivatives (VDDs) exhibit anticancer properties, both in vitro and in vivo. In our search for a vitamin D analog as potential anticancer agent, we investigated the influence of chirality in the side chain of the derivatives of 1,25-dihydroxyergocalciferol (1,25D2) on their activities. In this study, we synthesized modified analogs at the side chain and the A-ring, which differed from one another in their absolute configuration at C-24, namely (24S)- and (24R)-1,25-dihydroxy-19-nor-20a-homo-ergocalciferols (PRI-5105 and PRI-5106, respectively), and evaluated their activity. Unexpectedly, despite introducing double-point modifications, both analogs served as very good substrates for the vitamin D-hydroxylating enzyme. Irrespective of their absolute C-24 configuration, PRI-5105 and PRI-5106 showed relatively low resistance to CYP24A1-dependent metabolic deactivation. Additionally, both VDDs revealed a similar antiproliferative activity against HT-29 colorectal cancer cells which was higher than that of 1,25D3, the major biologically active metabolite of vitamin D. Furthermore, PRI-5105 and PRI-5106 significantly enhanced the cell growth-inhibitory activity of 5-fluorouracil on HT-29 cell line. In conclusion, although the two derivatives showed a relatively high anticancer potential, they exhibited undesired high metabolic conversion.


Assuntos
Antineoplásicos/síntese química , Neoplasias Colorretais/metabolismo , Ergocalciferóis/síntese química , Vitamina D3 24-Hidroxilase/metabolismo , Vitamina D/análogos & derivados , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ergocalciferóis/química , Ergocalciferóis/farmacologia , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Vitamina D/química
13.
Molecules ; 25(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295313

RESUMO

In this paper, we proved that the solid-state structure of vitamin D analog is well represented by the structures of its structural fragments. This is important in predicting the biological activity of vitamin D analogs that are not available in the solid form. The previously published crystal structure of advanced vitamin D intermediate provided additional insights into vitamin D properties. A similar analysis based on simple vitamin D intermediate analogues showed that precursors crystallized in the space groups typical for vitamins D; geometrical parameters were related to the corresponding parameters in the vitamin D analogues; and crystal structures of the basic intermediates and their final products contained similar intermolecular interactions, essential for the infinite hydrogen bond motif observed in the vitamin D analogues. The energy of these interactions is related as shown by theoretical calculations, that is, energy frameworks analysis. Moreover, analysis of the hydrogen bonds motifs revealed a relation between these motifs and the absolute configuration of basic intermediates as well as the space orientation of the exocyclic methylene group in the final structures.


Assuntos
Modelos Moleculares , Vitamina D/análogos & derivados , Vitamina D/química , Cristalografia por Raios X , Ligação de Hidrogênio , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Difração de Raios X
14.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31455010

RESUMO

1,25-dihydroxyvitamin D3 (1,25D3) is implicated in many cellular functions, including cell proliferation and differentiation, thus exerting potential antitumor effects. A major limitation for therapeutic use of 1,25D3 are potent calcemic activities. Therefore, synthetic analogs of 1,25D3 for use in anticancer therapy should retain cell differentiating potential, with calcemic activity being reduced. To obtain this goal, the analogs should effectively activate transcription of genes responsible for cell differentiation, leaving the genes responsible for calcium homeostasis less active. In order to better understand this phenomenon, we selected a series of structurally related 19-nor analogs of 1,25D (PRI-5100, PRI-5101, PRI-5105, and PRI-5106) and tested their activities in blood cells and in cells connected to calcium homeostasis. Affinities of analogs to recombinant vitamin D receptor (VDR) protein were not correlated to their pro-differentiating activities. Moreover, the pattern of transcriptional activities of the analogs was different in cell lines originating from various vitamin D-responsive tissues. We thus hypothesized that receptors which participate in transport of the analogs to the cells might contribute to the observed differences. In order to study this hypothesis, we produced renal cells with knock-out of the megalin gene. Our results indicate that megalin has a minor effect on semi-selective activities of vitamin D analogs.


Assuntos
Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Especificidade de Órgãos/efeitos dos fármacos , Ligação Proteica , Receptores de Calcitriol/agonistas , Vitamina D/análogos & derivados , Vitamina D/química
15.
Int J Mol Sci ; 19(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037036

RESUMO

The most active metabolite of vitamin D is 1α,25-dihydroxyvitamin D3, which is a central regulator of mineral homeostasis: excessive administration leads to hypercalcemia. Additionally, 1α,25-dihydroxyvitamin D3 is important to decision-making by cells, driving many cell types to growth arrest, differentiate and undergo apoptosis. 1α,25-Dihydroxyvitamin D3 regulates gene transcription by binding to a single known receptor, the vitamin D receptor. Rapid intracellular signals are also elicited in vitro by 1α,25-dihydroxyvitamin D3 that are independent of transcription. There are many aspects of the multiple actions of 1α,25-dihydroxyvitamin D3 that we do not fully understand. These include how a single receptor and provoked rapid events relate to the different actions of 1α,25-dihydroxyvitamin D3, its calcemic action per se, and whether a large number of genes are activated directly, via the vitamin D receptor, or indirectly. A strategy to resolving these issues has been to generate synthetic analogues of 1α,25-dihydroxyvitamin D3: Some of these separate the anti-proliferative and calcemic actions of the parent hormone. Crystallography is important to understanding how differences between 1α,25-dihydroxyvitamin D3- and analogue-provoked structural changes to the vitamin D receptor may underlie their different activity profiles. Current crystallographic resolution has not revealed such information. Studies of our new analogues have revealed the importance of the A-ring adopting the chair ß-conformation upon interaction with the vitamin D receptor to receptor-affinity and biological activity. Vitamin D analogues are useful probes to providing a better understanding of the physiology of vitamin D.


Assuntos
Vitamina D/química , Vitamina D/metabolismo , Animais , Diferenciação Celular/fisiologia , Humanos , Receptores de Calcitriol/metabolismo , Relação Estrutura-Atividade , Vitamina D/análogos & derivados
16.
Tumour Biol ; 37(4): 4699-709, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26511971

RESUMO

This study was aimed to determine whether hypocalcemic analogs of active forms of vitamins D modulate expression of genes related to stem-like phenotype in colon cancer cell lines HT-29 and HCT-116 undergoing renewal after the treatment with 5-fluorouracil (5-FU). Both lines express vitamin D receptor, but differ in differentiation stage and vitamin D sensitivity. Cells that resisted the 5-FU exposure were treated with synthetic analog of 1,25-dihydroxyvitamin D2 (PRI-1906) and analogs of 1,25-dihydroxyvitamin D3 (PRI-2191 and PRI-2205). Proliferative activity was more profoundly affected by vitamin D analogs in HT-29/5-FU than in HCT-116/5-FU cells. In HT-29/5-FU cells, analogs PRI-1906 and PRI-2191 downregulated the expression of genes related to survival, re-growth, and invasiveness during renewal, while PRI-2205 increased expression of genes related to differentiation only. In HCT-116/5-FU cells, PRI-2191 decreased the expression of stemness- and angiogenesis-related genes, whereas PRI-1906 augmented their expression. The effects in HCT-116/5-FU cells were observed at higher concentrations of the analogs than those used for HT-29/5-FU cells. Out of the series of analogs studied, PRI-2191 might be used to counteract the renewal of both moderately and poorly differentiated cancer cells following conventional treatment.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Calcitriol/análogos & derivados , Di-Hidroxicolecalciferóis/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ergocalciferóis/farmacologia , Fluoruracila/farmacologia , Calcitriol/farmacologia , Autorrenovação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal , Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/fisiologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
17.
Int J Mol Sci ; 17(7)2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27399677

RESUMO

1α,25-dihydroxyvitamin D3 (1,25D3) is a powerful differentiation inducer for acute myeloid leukemia (AML) cells. However, 1,25D3 doses required for differentiation of AML cells may cause lethal hypercalcemia in vivo. There is evidence that vitamin D2 is less toxic than vitamin D3 in animals. Here, we determined the differentiation effects of novel analogs of 1α,25-dihydroxyvitamin D2 (1,25D2), PRI-1916 and PRI-1917, in which the extended side chains of their previously reported precursors (PRI-1906 and PRI-1907, respectively) underwent further 24Z (24-cis) modification. Using four human AML cell lines representing different stages of myeloid maturation (KG-1a, HL60, U937, and MOLM-13), we found that the potency of PRI-1916 was slightly higher or equal to that of PRI-1906 while PRI-1917 was significantly less potent than PRI-1907. We also demonstrated that 1,25D2 was a less effective differentiation agent than 1,25D3 in these cell lines. Irrespective of their differentiation potency, all the vitamin D2 derivatives tested were less potent than 1,25D3 in transactivating the DR3-type vitamin D response elements. However, similar to 1,25D3, both 1,25D2 and its analogs could strongly cooperate with the plant polyphenol carnosic acid in inducing cell differentiation and inhibition of G1-S cell cycle transition. These results indicate that the 24Z modification has contrasting effects on the differentiation ability of PRI-1906 and PRI-1907 and that the addition of a plant polyphenol could result in a similar extent of cell differentiation induced by different vitamin D compounds. The enhanced antileukemic effects of the tested combinations may constitute the basis for the development of novel approaches for differentiation therapy of AML.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ergocalciferóis/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Abietanos/farmacologia , Linhagem Celular Tumoral , Ergocalciferóis/química , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Extratos Vegetais/química
18.
Int J Mol Sci ; 17(1)2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26760999

RESUMO

Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM) analogs of 1,25-dihydroxyvitamin D2 (1,25(OH)2D2) induced differentiation of the vitamin D receptor (VDR) positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH)2D2 required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH)2D3. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl) and in the A-ring (5,6-trans modification), the regular side-chain of vitamin D2 or D3 was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM). Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ergocalciferóis/química , Ergocalciferóis/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Melanoma/patologia , Receptores de Calcitriol/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
19.
Int J Mol Sci ; 17(2)2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26840307

RESUMO

Structurally similar double-point modified analogues of 1,25-dihydroxyvitamin D2 (1,25D2) were screened in vitro for their pro-differentiating activity against the promyeloid cell line HL60. Their affinities towards human full length vitamin D receptor (VDR) and metabolic stability against human vitamin D 24-hydroxylase (CYP24A1) were also tested. The analogues (PRI-1730, PRI-1731, PRI-1732, PRI-1733 and PRI-1734) contained 5,6-trans modification of the A-ring and of the triene system, additional hydroxyl or unsaturation at C-22 in the side chain and reversed absolute configuration (24-epi) at C-24 of 1,25D2. As presented in this paper, introduction of selected structural modifications simultaneously in two distinct parts of the vitamin D molecule resulted in a divergent group of analogues. Analogues showed lower VDR affinity in comparison to that of the parent hormones, 1,25D2 and 1,25D3, and they caused effective HL60 cell differentiation only at high concentrations of 100 nM and above. Unexpectedly, introducing of a 5,6-trans modification combined with C-22 hydroxyl and 24-epi configuration switched off entirely the cell differentiation activity of the analogue (PRI-1734). However, this analogue remained a moderate substrate for CYP24A1, as it was metabolized at 22%, compared to 35% for 1,25D2. Other analogues from this series were either less (12% for PRI-1731 and PRI-1733) or more (52% for PRI-1732) resistant to the enzymatic deactivation. Although the inactive analogue PRI-1734 failed to show VDR antagonism, when tested in HL60 cells, its structure might be a good starting point for our design of a vitamin D antagonist.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ergocalciferóis/farmacologia , Leucemia/enzimologia , Antineoplásicos/química , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ergocalciferóis/química , Células HL-60 , Humanos , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Estrutura Molecular , Receptores de Calcitriol/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Vitamina D3 24-Hidroxilase/antagonistas & inibidores
20.
Int J Mol Sci ; 17(6)2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27314328

RESUMO

This study aimed to evaluate the capacity of hypocalcemic analogues of 1α,25-dihydroxyvitamin D2 (1,25D2) and 1α,25-dihydroxyvitamin D3 (1,25D3) to inhibit regrowth and regulate the stemness-related gene expression in colon cancer cells undergoing renewal after exposure to 5-fluorouracil (5-FU). All of the tested analogues of 1,25D2 equally potently decreased the clonogenicity and the proliferative activity of HT-29 cells which survived the exposure to 5-FU, but differently regulated gene expression of these cells during their renewal. 1,25D2 and analogues (PRI-1907 and PRI-1917), as well as 1,25D3 and analogue PRI-2191, decreased the relative expression level of several stemness-related genes, such as NANOG, OCT3/4, PROM1, SOX2, ALDHA1, CXCR4, in HT-29/5-FU cells during their renewal, in comparison to untreated HT-29/5-FU cells. The other 1,25D2 analogues (PRI-1906 and PRI-1916) were not capable of downregulating the expression of these stemness-related genes as the analogues PRI-1907 and PRI-1917 did. All of the tested vitamin D analogues upregulated CDH1, the gene encoding E-cadherin associated with epithelial phenotype. Out of the series of analogues studied, side-chain branched analogues of 1,25D2 (PRI-1907, PRI-1917) and the analogue of 1,25D3 (PRI-2191) might be used to target cancer cells with stem-like phenotypes that survive conventional chemotherapy.


Assuntos
Calcitriol/farmacologia , Vitaminas/farmacologia , Antineoplásicos/toxicidade , Calcitriol/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA