RESUMO
The eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the interpretability of transcript-level QTLs, we have developed static QTL coverage plots that visualise the association between the genotype and average RNA sequencing read coverage in the region for all 1.7 million fine mapped associations. To illustrate the utility of these updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual inspection could sometimes be used to distinguish primary splicing QTLs from those that appear to be secondary consequences of large-effect gene expression QTLs. While these visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases.
Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Genótipo , Sequência de Bases , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo ÚnicoRESUMO
g:Profiler is a reliable and up-to-date functional enrichment analysis tool that supports various evidence types, identifier types and organisms. The toolset integrates many databases, including Gene Ontology, KEGG and TRANSFAC, to provide a comprehensive and in-depth analysis of gene lists. It also provides interactive and intuitive user interfaces and supports ordered queries and custom statistical backgrounds, among other settings. g:Profiler provides multiple programmatic interfaces to access its functionality. These can be easily integrated into custom workflows and external tools, making them valuable resources for researchers who want to develop their own solutions. g:Profiler has been available since 2007 and is used to analyse millions of queries. Research reproducibility and transparency are achieved by maintaining working versions of all past database releases since 2015. g:Profiler supports 849 species, including vertebrates, plants, fungi, insects and parasites, and can analyse any organism through user-uploaded custom annotation files. In this update article, we introduce a novel filtering method highlighting Gene Ontology driver terms, accompanied by new graph visualizations providing a broader context for significant Gene Ontology terms. As a leading enrichment analysis and gene list interoperability service, g:Profiler offers a valuable resource for genetics, biology and medical researchers. It is freely accessible at https://biit.cs.ut.ee/gprofiler.
Assuntos
Mapeamento Cromossômico , Biologia Computacional , Genes , Software , Animais , Mapeamento Cromossômico/instrumentação , Mapeamento Cromossômico/métodos , Bases de Dados Genéticas , Internet , Reprodutibilidade dos Testes , Interface Usuário-Computador , Biologia Computacional/instrumentação , Biologia Computacional/métodos , Genes/genética , HumanosRESUMO
We present the first detailed braincase anatomical description and neuroanatomical study of Portugalosuchus azenhae, from the Cenomanian (Late Cretaceous) of Portugal. This eusuchian crocodylomorph was originally described as a putative Crocodylia and one of the oldest representatives of this clade; however, its phylogenetic position remains controversial. Based on new data obtained from high resolution Computed Tomography images (by micro-CT scan), this study aims to improve the original description of this taxon and also update the scarce neuroanatomical knowledge of Eusuchia and Crocodylia from this time interval, a key period to understand the origin and evolution of these clades. The resulting three-dimensional models from the CT data allowed a detailed description of its well-preserved neurocranium and internal cavities. Therefore, it was possible to reconstruct the cavities of the olfactory region, nasopharyngeal ducts, brain, nerves, carotid arteries, blood vessels, paratympanic sinus system and inner ear, which allowed to estimate some neurosensorial capabilities. By comparison with other crocodylomorphs, these analyses showed that Portugalosuchus, back in the Cenomanian, already displayed an olfactive acuity, sight, hearing and cognitive skills within the range of that observed in other basal eusuchians and crocodylians, including extant species. In addition, and in order to test its disputed phylogenetic position, these new anatomical data, which helped to correct and complete some of the original observations, were included in one of the most recent morphology-based phylogenies. The position of Portugalosuchus differs slightly from the original publication since it is now located as a "thoracosaurid" within Gavialoidea, but still as a crocodylian. Despite all this, to better contrast these results, additional phylogenetic analyses including this new morphological character coding together with DNA data should be performed.
Assuntos
Evolução Biológica , Neuroanatomia , Animais , Filogenia , Portugal , Fósseis , Crânio/anatomia & histologia , Répteis/anatomia & histologia , Microtomografia por Raio-XRESUMO
The family Rhabdoviridae comprises viruses with negative-sense (-) RNA genomes of 10-16 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants or animals, including mammals, birds, reptiles, amphibians or fish, as well as arthropods, which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish or agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Rhabdoviridae, which is available at ictv.global/report/rhabdoviridae.
Assuntos
Rhabdoviridae , Animais , Aves , Peixes , Genoma Viral , Mamíferos , Répteis , Rhabdoviridae/genética , Vírion , Replicação ViralRESUMO
Present-day crocodylians exhibit a remarkably akinetic skull with a highly modified braincase. We present a comprehensive description of the neurocranial osteology of extant crocodylians, with notes on the development of individual skeletal elements and a discussion of the terminology used for this project. The quadrate is rigidly fixed by multiple contacts with most braincase elements. The parabasisphenoid is sutured to the pterygoids (palate) and the quadrate (suspensorium); as a result, the basipterygoid joint is completely immobilized. The prootic is reduced and externally concealed by the quadrate. It has a verticalized buttress that participates in the canal for the temporal vasculature. The ventrolateral processes of the otoccipitals completely cover the posteroventral region of the braincase, enclose the occipital nerves and blood vessels in narrow bony canals and also provide additional sutural contacts between the braincase elements and further consolidate the posterior portion of the crocodylian skull. The otic capsule of crocodylians has a characteristic cochlear prominence that corresponds to the lateral route of the perilymphatic sac. Complex internal structures of the otoccipital (extracapsular buttress) additionally arrange the neurovascular structures of the periotic space of the cranium. Most of the braincase elements of crocodylians are excavated by the paratympanic pneumatic sinuses. The braincase in various extant crocodylians has an overall similar structure with some consistent variation between taxa. Several newly observed features of the braincase are present in Gavialis gangeticus and extant members of Crocodylidae to the exclusion of alligatorids: the reduced exposure of the prootic buttress on the floor of the temporal canal, the sagittal nuchal crest of the supraoccipital projecting posteriorly beyond the postoccipital processes and the reduced paratympanic pneumaticity. The most distinctive features of the crocodylian braincase (fixed quadrate and basipterygoid joint, consolidated occiput) evolved relatively rapidly at the base of Crocodylomorpha and accompanied the initial diversification of this clade during the Late Triassic and Early Jurassic. We hypothesize that profound rearrangements in the individual development of the braincases of basal crocodylomorphs underlie these rapid evolutionary modifications. These rearrangements are likely reflected in the embryonic development of extant crocodylians and include the involvement of neomorphic dermal anlagen in different portions of the developing chondrocranium, the extensive ossification of the palatoquadrate cartilage as a single expanded quadrate and the anteromedial inclination of the quadrate.
Assuntos
Jacarés e Crocodilos , Evolução Biológica , Animais , Cabeça , Osteogênese , Crânio/anatomia & histologiaRESUMO
Biological data analysis often deals with lists of genes arising from various studies. The g:Profiler toolset is widely used for finding biological categories enriched in gene lists, conversions between gene identifiers and mappings to their orthologs. The mission of g:Profiler is to provide a reliable service based on up-to-date high quality data in a convenient manner across many evidence types, identifier spaces and organisms. g:Profiler relies on Ensembl as a primary data source and follows their quarterly release cycle while updating the other data sources simultaneously. The current update provides a better user experience due to a modern responsive web interface, standardised API and libraries. The results are delivered through an interactive and configurable web design. Results can be downloaded as publication ready visualisations or delimited text files. In the current update we have extended the support to 467 species and strains, including vertebrates, plants, fungi, insects and parasites. By supporting user uploaded custom GMT files, g:Profiler is now capable of analysing data from any organism. All past releases are maintained for reproducibility and transparency. The 2019 update introduces an extensive technical rewrite making the services faster and more flexible. g:Profiler is freely available at https://biit.cs.ut.ee/gprofiler.
Assuntos
Bases de Dados Genéticas , Genoma , Armazenamento e Recuperação da Informação , Software , Animais , Fungos/genética , Humanos , Parasitos/genética , Plantas/genéticaRESUMO
BACKGROUND: Protein microarray is a well-established approach for characterizing activity levels of thousands of proteins in a parallel manner. Analysis of protein microarray data is complex and time-consuming, while existing solutions are either outdated or challenging to use without programming skills. The typical data analysis pipeline consists of a data preprocessing step, followed by differential expression analysis, which is then put into context via functional enrichment. Normally, biologists would need to assemble their own workflow by combining a set of unrelated tools to analyze experimental data. Provided that most of these tools are developed independently by various bioinformatics groups, making them work together could be a real challenge. RESULTS: Here we present PAWER, the online web tool dedicated solely to protein microarray analysis. PAWER enables biologists to carry out all the necessary analysis steps in one go. PAWER provides access to state-of-the-art computational methods through the user-friendly interface, resulting in publication-ready illustrations. We also provide an R package for more advanced use cases, such as bespoke analysis workflows. CONCLUSIONS: PAWER is freely available at https://biit.cs.ut.ee/pawer .
Assuntos
Biologia Computacional/métodos , Análise Serial de Proteínas/métodos , HumanosRESUMO
In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Assuntos
Mononegavirais/classificação , Mononegavirais/genética , Mononegavirais/isolamento & purificação , Filogenia , Virologia/organização & administraçãoRESUMO
In February 2019, following the annual taxon ratification vote, the order Mononegavirales was amended by the addition of four new subfamilies and 12 new genera and the creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Assuntos
Mononegavirais/classificação , Mononegavirais/genética , Genoma Viral/genética , RNA Viral/genéticaRESUMO
BACKGROUND: A widely applied approach to extract knowledge from high-throughput genomic data is clustering of gene expression profiles followed by functional enrichment analysis. This type of analysis, when done manually, is highly subjective and has limited reproducibility. Moreover, this pipeline can be very time-consuming and resource-demanding as enrichment analysis is done for tens to hundreds of clusters at a time. Thus, the task often needs programming skills to form a pipeline of different software tools or R packages to enable an automated approach. Furthermore, visualising the results can be challenging. RESULTS: We developed a web tool, funcExplorer, which automatically combines hierarchical clustering and enrichment analysis to detect functionally related gene clusters. The functional characterisation is achieved using structured knowledge from data sources such as Gene Ontology, KEGG and Reactome pathways, Human Protein Atlas, and Human Phenotype Ontology. funcExplorer includes various measures for finding biologically meaningful clusters, provides a modern graphical user interface, and has wide-ranging data export and sharing options as well as software transparency by open-source code. The results are presented in a visually compact and interactive format, enabling users to explore the biological essence of the data. We compared our results with previously published gene clusters to demonstrate that funcExplorer can perform the data characterisation equally well, but without requiring labour-intensive manual interference. CONCLUSIONS: The open-source web tool funcExplorer enables scientists with high-throughput genomic data to obtain a preliminary interactive overview of the expression patterns, gene names, and shared functionalities in their dataset in a visually pleasing format. funcExplorer is publicly available at https://biit.cs.ut.ee/funcexplorer.
Assuntos
Redes Reguladoras de Genes , Genômica/métodos , Proteômica/métodos , Software , Transcriptoma , Análise por Conglomerados , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interface Usuário-ComputadorRESUMO
Bats harbor a large diversity of coronaviruses (CoVs), several of which are related to zoonotic pathogens that cause severe disease in humans. Our screening of bat samples collected in Kenya from 2007 to 2010 not only detected RNA from several novel CoVs but, more significantly, identified sequences that were closely related to human CoVs NL63 and 229E, suggesting that these two human viruses originate from bats. We also demonstrated that human CoV NL63 is a recombinant between NL63-like viruses circulating in Triaenops bats and 229E-like viruses circulating in Hipposideros bats, with the breakpoint located near 5' and 3' ends of the spike (S) protein gene. In addition, two further interspecies recombination events involving the S gene were identified, suggesting that this region may represent a recombination "hot spot" in CoV genomes. Finally, using a combination of phylogenetic and distance-based approaches, we showed that the genetic diversity of bat CoVs is primarily structured by host species and subsequently by geographic distances.IMPORTANCE Understanding the driving forces of cross-species virus transmission is central to understanding the nature of disease emergence. Previous studies have demonstrated that bats are the ultimate reservoir hosts for a number of coronaviruses (CoVs), including ancestors of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and human CoV 229E (HCoV-229E). However, the evolutionary pathways of bat CoVs remain elusive. We provide evidence for natural recombination between distantly related African bat coronaviruses associated with Triaenops afer and Hipposideros sp. bats that resulted in a NL63-like virus, an ancestor of the human pathogen HCoV-NL63. These results suggest that interspecies recombination may play an important role in CoV evolution and the emergence of novel CoVs with zoonotic potential.
Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Infecções Respiratórias/veterinária , Sequência de Aminoácidos , Animais , Sequência Conservada , Infecções por Coronavirus/epidemiologia , Coronavirus Humano NL63 , Monitoramento Epidemiológico , Evolução Molecular , Variação Genética , Genoma Viral , Quênia/epidemiologia , Filogenia , Filogeografia , Prevalência , Recombinação Genética , Infecções Respiratórias/epidemiologia , Análise de Sequência de DNA , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat (Rousettus aegyptiacus); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-ß, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-ß. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk.IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with filoviruses remains unknown. The outcome of a virus-host interaction depends on the ability of the host immune system to suppress viral replication and the ability of a virus to counteract the host defenses. Our study is a comparative analysis of the host innate immune response to either MARV or EBOV infection in bat and human cells and the role of viral interferon-inhibiting domains in the host innate immune responses. The data are useful for understanding the interactions of filoviruses with natural and accidental hosts and for identification of factors that influence filovirus evolution.
Assuntos
Ebolavirus/imunologia , Imunidade Inata , Marburgvirus/imunologia , Animais , Linhagem Celular , Quirópteros , Ebolavirus/fisiologia , Humanos , Tolerância Imunológica , Interferons/análise , Marburgvirus/fisiologia , Domínios Proteicos , Proteínas Virais/imunologia , Replicação ViralRESUMO
Although there are over 1,150 bat species worldwide, the diversity of viruses harbored by bats has only recently come into focus as a result of expanded wildlife surveillance. Such surveys are of importance in determining the potential for novel viruses to emerge in humans, and for optimal management of bats and their habitats. To enhance our knowledge of the viral diversity present in bats, we initially surveyed 415 sera from African and Central American bats. Unbiased high-throughput sequencing revealed the presence of a highly diverse group of bat-derived viruses related to hepaciviruses and pegiviruses within the family Flaviridae. Subsequent PCR screening of 1,258 bat specimens collected worldwide indicated the presence of these viruses also in North America and Asia. A total of 83 bat-derived viruses were identified, representing an infection rate of nearly 5%. Evolutionary analyses revealed that all known hepaciviruses and pegiviruses, including those previously documented in humans and other primates, fall within the phylogenetic diversity of the bat-derived viruses described here. The prevalence, unprecedented viral biodiversity, phylogenetic divergence, and worldwide distribution of the bat-derived viruses suggest that bats are a major and ancient natural reservoir for both hepaciviruses and pegiviruses and provide insights into the evolutionary history of hepatitis C virus and the human GB viruses.
Assuntos
Quirópteros/virologia , Reservatórios de Doenças/veterinária , Flaviviridae/genética , Hepacivirus/genética , Viroses/virologia , Sequência de Aminoácidos , Animais , Teorema de Bayes , Códon , Reservatórios de Doenças/virologia , Variação Genética , Genoma Viral , Geografia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Viroses/veterináriaRESUMO
As part of a larger survey for detection of pathogens among wildlife in sub-Saharan Africa conducted during 2007-2012, multiple diverse paramyxovirus sequences were detected in renal tissues of bats. Phylogenetic analysis supports the presence of at least 2 major viral lineages and suggests that paramyxoviruses are strongly associated with several bat genera.
Assuntos
Quirópteros/virologia , Henipavirus/patogenicidade , Infecções por Paramyxoviridae/epidemiologia , Paramyxovirinae/classificação , Prevalência , África Subsaariana/epidemiologia , Animais , Infecções por Paramyxoviridae/virologia , Filogenia , Vigilância da População/métodos , RNA Viral/classificação , RNA Viral/genéticaRESUMO
Eight years after emigrating from Brazil, an otherwise healthy man developed rabies. An exposure prior to immigration was reported. Genetic analysis revealed a canine rabies virus variant found only in the patient's home country, and the patient had not traveled internationally since immigrating to the United States. We describe how epidemiological, phylogenetic, and viral sequencing data provided confirmation that rabies encephalomyelitis may present after a long, multiyear incubation period, a consideration that previously has been hypothesized without the ability to exclude a more recent exposure. Accordingly, rabies should be considered in the diagnosis of any acute encephalitis, myelitis, or encephalomyelitis.
Assuntos
Emigrantes e Imigrantes , Período de Incubação de Doenças Infecciosas , Filogenia , Raiva/líquido cefalorraquidiano , Raiva/diagnóstico , Adulto , Animais , Brasil , Cães , Humanos , Masculino , Fatores de Tempo , Estados UnidosRESUMO
In 2009, a novel lyssavirus (subsequently named Ikoma lyssavirus, IKOV) was detected in the brain of an African civet (Civettictis civetta) with clinical rabies in the Serengeti National Park of Tanzania. The degree of nucleotide divergence between the genome of IKOV and those of other lyssaviruses predicted antigenic distinction from, and lack of protection provided by, available rabies vaccines. In addition, the index case was considered likely to be an incidental spillover event, and therefore the true reservoir of IKOV remained to be identified. The advent of sensitive molecular techniques has led to a rapid increase in the discovery of novel viruses. Detecting viral sequence alone, however, only allows for prediction of phenotypic characteristics and not their measurement. In the present study we describe the in vitro and in vivo characterization of IKOV, demonstrating that it is (1) pathogenic by peripheral inoculation in an animal model, (2) antigenically distinct from current rabies vaccine strains and (3) poorly neutralized by sera from humans and animals immunized against rabies. In a laboratory mouse model, no protection was elicited by a licensed rabies vaccine. We also investigated the role of bats as reservoirs of IKOV. We found no evidence for infection among 483 individuals of at least 13 bat species sampled across sites in the Serengeti and Southern Kenya.
Assuntos
Antígenos Virais/genética , Antígenos Virais/imunologia , Lyssavirus/genética , Lyssavirus/imunologia , Infecções por Rhabdoviridae/veterinária , Animais , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Quênia , Lyssavirus/classificação , Lyssavirus/isolamento & purificação , Camundongos , Vacina Antirrábica/imunologia , Infecções por Rhabdoviridae/virologia , Tanzânia , ViverridaeRESUMO
In nature, rabies virus (RABV; genus Lyssavirus, family Rhabdoviridae) represents an assemblage of phylogenetic lineages, associated with specific mammalian host species. Although it is generally accepted that RABV evolved originally in bats and further shifted to carnivores, mechanisms of such host shifts are poorly understood, and examples are rarely present in surveillance data. Outbreaks in carnivores caused by a RABV variant, associated with big brown bats, occurred repeatedly during 2001-2009 in the Flagstaff area of Arizona. After each outbreak, extensive control campaigns were undertaken, with no reports of further rabies cases in carnivores for the next several years. However, questions remained whether all outbreaks were caused by a single introduction and further perpetuation of bat RABV in carnivore populations, or each outbreak was caused by an independent introduction of a bat virus. Another question of concern was related to adaptive changes in the RABV genome associated with host shifts. To address these questions, we sequenced and analyzed 66 complete and 20 nearly complete RABV genomes, including those from the Flagstaff area and other similar outbreaks in carnivores, caused by bat RABVs, and representatives of the major RABV lineages circulating in North America and worldwide. Phylogenetic analysis demonstrated that each Flagstaff outbreak was caused by an independent introduction of bat RABV into populations of carnivores. Positive selection analysis confirmed the absence of post-shift changes in RABV genes. In contrast, convergent evolution analysis demonstrated several amino acids in the N, P, G and L proteins, which might be significant for pre-adaptation of bat viruses to cause effective infection in carnivores. The substitution S/T242 in the viral glycoprotein is of particular merit, as a similar substitution was suggested for pathogenicity of Nishigahara RABV strain. Roles of the amino acid changes, detected in our study, require additional investigations, using reverse genetics and other approaches.
Assuntos
Adaptação Fisiológica/genética , Carnívoros/virologia , Vetores de Doenças , Vírus da Raiva/genética , Raiva/epidemiologia , Raiva/veterinária , Animais , Arizona/epidemiologia , Gatos , Quirópteros/virologia , Raposas/virologia , Genes Virais/genética , Mephitidae/virologia , Filogenia , Vírus da Raiva/patogenicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
The rodent-borne Andes virus (ANDV) causes a severe disease in humans. We developed an ANDV mRNA vaccine based on the M segment of the viral genome, either with regular uridine (U-mRNA) or N1-methylpseudouridine (m1Ψ-mRNA). Female mice immunized by m1Ψ-mRNA developed slightly greater germinal center (GC) responses than U-mRNA-immunized mice. Single cell RNA and BCR sequencing of the GC B cells revealed similar levels of activation, except an additional cluster of cells exhibiting interferon response in animals vaccinated with U-mRNA but not m1Ψ-mRNA. Similar immunoglobulin class-switching and somatic hypermutations were observed in response to the vaccines. Female Syrian hamsters were immunized via a prime-boost regimen with two doses of each vaccine. The titers of glycoprotein-binding antibodies were greater for U-mRNA construct than for m1Ψ-mRNA construct; however, the titers of ANDV-neutralizing antibodies were similar. Vaccinated animals were challenged with a lethal dose of ANDV, along with a naïve control group. All control animals and two animals vaccinated with a lower dose of m1Ψ-mRNA succumbed to infection whereas other vaccinated animals survived without evidence of virus replication. The data demonstrate the development of a protective vaccine against ANDV and the lack of a substantial effect of m1Ψ modification on immunogenicity and protection in rodents.
Assuntos
Mesocricetus , Uridina , Vacinas Virais , Animais , Feminino , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/imunologia , Anticorpos Antivirais/imunologia , Orthohantavírus/imunologia , Orthohantavírus/genética , Anticorpos Neutralizantes/imunologia , Centro Germinativo/imunologia , Pseudouridina/imunologia , Cricetinae , Vacinas de mRNA , Febre Hemorrágica Americana/prevenção & controle , Febre Hemorrágica Americana/imunologia , Febre Hemorrágica Americana/virologia , RNA Viral/genética , RNA Viral/imunologia , Linfócitos B/imunologia , Humanos , Desenvolvimento de VacinasRESUMO
BACKGROUND: The COVID-19 pandemic was characterised by rapid waves of disease, carried by the emergence of new and more infectious SARS-CoV-2 virus variants. How the pandemic unfolded in various locations during its first two years has yet to be sufficiently covered. To this end, here we are looking at the circulating SARS-CoV-2 variants, their diversity, and hospitalisation rates in Estonia in the period from March 2000 to March 2022. METHODS: We sequenced a total of 27,550 SARS-CoV-2 samples in Estonia between March 2020 and March 2022. High-quality sequences were genotyped and assigned to Nextstrain clades and Pango lineages. We used regression analysis to determine the dynamics of lineage diversity and the probability of clade-specific hospitalisation stratified by age and sex. RESULTS: We successfully sequenced a total of 25,375 SARS-CoV-2 genomes (or 92%), identifying 19 Nextstrain clades and 199 Pango lineages. In 2020 the most prevalent clades were 20B and 20A. The various subsequent waves of infection were driven by 20I (Alpha), 21J (Delta) and Omicron clades 21K and 21L. Lineage diversity via the Shannon index was at its highest during the Delta wave. About 3% of sequenced SARS-CoV-2 samples came from hospitalised individuals. Hospitalisation increased markedly with age in the over-forties, and was negligible in the under-forties. Vaccination decreased the odds of hospitalisation in over-forties. The effect of vaccination on hospitalisation rates was strongly dependent upon age but was clade-independent. People who were infected with Omicron clades had a lower hospitalisation likelihood in age groups of forty and over than was the case with pre-Omicron clades regardless of vaccination status. CONCLUSIONS: COVID-19 disease waves in Estonia were driven by the Alpha, Delta, and Omicron clades. Omicron clades were associated with a substantially lower hospitalisation probability than pre-Omicron clades. The protective effect of vaccination in reducing hospitalisation likelihood was independent of the involved clade.
Assuntos
COVID-19 , Hospitalização , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/virologia , Hospitalização/estatística & dados numéricos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/classificação , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Estônia/epidemiologia , Genoma Viral , Adulto Jovem , Filogenia , Pandemias , Adolescente , Criança , Lactente , Pré-Escolar , Idoso de 80 Anos ou maisRESUMO
Zoonotic and vector-borne pathogens have comprised a significant component of emerging human infections in recent decades, and bats are increasingly recognized as reservoirs for many of these disease agents. To identify novel pathogens associated with bats, we screened tissues of bats collected in Kenya. Virus isolates were identified by next generation sequencing of viral nucleic acid preparations from the infected cell culture supernatant and characterized. Here we report the identification of Fikirini rhabdovirus, a novel rhabdovirus isolated from a bat, Hipposideros vittatus, captured along the Kenyan coast.