Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Pharmacol ; 90(2): 80-95, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27193582

RESUMO

The increasing prevalence of influenza viruses with resistance to approved antivirals highlights the need for new anti-influenza therapeutics. Here we describe the functional properties of hexamethylene amiloride (HMA)-derived compounds that inhibit the wild-type and adamantane-resistant forms of the influenza A M2 ion channel. For example, 6-(azepan-1-yl)-N-carbamimidoylnicotinamide ( 9: ) inhibits amantadine-sensitive M2 currents with 3- to 6-fold greater potency than amantadine or HMA (IC50 = 0.2 vs. 0.6 and 1.3 µM, respectively). Compound 9: competes with amantadine for M2 inhibition, and molecular docking simulations suggest that 9: binds at site(s) that overlap with amantadine binding. In addition, tert-butyl 4'-(carbamimidoylcarbamoyl)-2',3-dinitro-[1,1'-biphenyl]-4-carboxylate ( 27: ) acts both on adamantane-sensitive and a resistant M2 variant encoding a serine to asparagine 31 mutation (S31N) with improved efficacy over amantadine and HMA (IC50 = 0.6 µM and 4.4 µM, respectively). Whereas 9: inhibited in vitro replication of influenza virus encoding wild-type M2 (EC50 = 2.3 µM), both 27: and tert-butyl 4'-(carbamimidoylcarbamoyl)-2',3-dinitro-[1,1'-biphenyl]-4-carboxylate ( 26: ) preferentially inhibited viruses encoding M2(S31N) (respective EC50 = 18.0 and 1.5 µM). This finding indicates that HMA derivatives can be designed to inhibit viruses with resistance to amantadine. Our study highlights the potential of HMA derivatives as inhibitors of drug-resistant influenza M2 ion channels.


Assuntos
Amilorida/análogos & derivados , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/metabolismo , Proteínas da Matriz Viral/antagonistas & inibidores , Amantadina/farmacologia , Amilorida/síntese química , Amilorida/química , Amilorida/farmacologia , Animais , Antivirais/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Guanidinas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Técnicas de Patch-Clamp , Proteínas da Matriz Viral/metabolismo
2.
J Gen Physiol ; 129(5): 437-55, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17470663

RESUMO

Lowering external pH reduces peak current and enhances current decay in Kv and Shaker-IR channels. Using voltage-clamp fluorimetry we directly determined the fate of Shaker-IR channels at low pH by measuring fluorescence emission from tetramethylrhodamine-5-maleimide attached to substituted cysteine residues in the voltage sensor domain (M356C to R362C) or S5-P linker (S424C). One aspect of the distal S3-S4 linker alpha-helix (A359C and R362C) reported a pH-induced acceleration of the slow phase of fluorescence quenching that represents P/C-type inactivation, but neither site reported a change in the total charge movement at low pH. Shaker S424C fluorescence demonstrated slow unquenching that also reflects channel inactivation and this too was accelerated at low pH. In addition, however, acidic pH caused a reversible loss of the fluorescence signal (pKa = 5.1) that paralleled the reduction of peak current amplitude (pKa = 5.2). Protons decreased single channel open probability, suggesting that the loss of fluorescence at low pH reflects a decreased channel availability that is responsible for the reduced macroscopic conductance. Inhibition of inactivation in Shaker S424C (by raising external K(+) or the mutation T449V) prevented fluorescence loss at low pH, and the fluorescence report from closed Shaker ILT S424C channels implied that protons stabilized a W434F-like inactivated state. Furthermore, acidic pH changed the fluorescence amplitude (pKa = 5.9) in channels held continuously at -80 mV. This suggests that low pH stabilizes closed-inactivated states. Thus, fluorescence experiments suggest the major mechanism of pH-induced peak current reduction is inactivation of channels from closed states from which they can activate, but not open; this occurs in addition to acceleration of P/C-type inactivation from the open state.


Assuntos
Ativação do Canal Iônico , Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Corantes Fluorescentes , Fluorometria , Concentração de Íons de Hidrogênio , Cinética , Potenciais da Membrana , Microinjeções , Modelos Biológicos , Mutação , Oócitos , Técnicas de Patch-Clamp , Conformação Proteica , Rodaminas , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética , Xenopus laevis
3.
Cell Biochem Biophys ; 43(2): 221-30, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16049347

RESUMO

Extracellular acidification and reduction of extracellular K(+) are known to decrease the currents of some voltage-gated potassium channels. Although the macroscopic conductance of WT hKv1.5 channels is not very sensitive to [K(+)](o) at pH 7.4, it is very sensitive to [K(+)](o) at pH 6.4, and in the mutant, H463G, the removal of K(+)(o) virtually eliminates the current at pH 7.4. We investigated the mechanism of current regulation by K(+)(o) in the Kv1.5 H463G mutant channel at pH 7.4 and the wild-type channel at pH 6.4 by taking advantage of Na(+) permeation through inactivated channels. Although the H463G currents were abolished in zero [K(+)](o), robust Na(+) tail currents through inactivated channels were observed. The appearance of H463G Na(+) currents with a slow rising phase on repolarization after a very brief depolarization (2 ms) suggests that channels could activate directly from closed-inactivated states. In wild-type channels, when intracellular K(+) was replaced by NMG(+) and the inward Na(+) current was recorded, addition of 1 mM K(+) prevented inactivation, but changing pH from 7.4 to 6.4 reversed this action. The data support the idea that C-type inactivation mediated at R487 in Kv1.5 channels is influenced by H463 in the outer pore. We conclude that both acidification and reduction of [K(+)](o) inhibit Kv1.5 channels through a common mechanism (i.e., by increasing channel inactivation, which occurs in the resting state or develops very rapidly after activation).


Assuntos
Líquidos Corporais/química , Ativação do Canal Iônico/fisiologia , Rim/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Potássio/química , Potássio/metabolismo , Células Cultivadas , Líquido Extracelular/química , Líquido Extracelular/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Rim/química , Canal de Potássio Kv1.5 , Potenciais da Membrana/fisiologia , Mutação , Relação Estrutura-Atividade
4.
Cell Biochem Biophys ; 43(2): 231-42, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16049348

RESUMO

Voltage-gated potassium (Kv) channels exist in the membranes of all living cells. Of the functional classes of Kv channels, the Kv1 channels are the largest and the best studied and are known to play essential roles in excitable cell function, providing an essential counterpoint to the various inward currents that trigger excitability. The serum potassium concentration [K(+)(o)] is tightly regulated in mammals and disturbances can cause significant functional alterations in the electrical behavior of excitable tissues in the nervous system and the heart. At least some of these changes may be mediated by Kv channels that are regulated by changes in the extracellular K(+) concentration. As well as changes in serum [K(+)(o)], tissue acidification is a frequent pathological condition known to inhibit Shaker and Kv1 voltage-gated potassium channels. In recent studies, it has become recognized that the acidification-induced inhibition of some Kv1 channels is K(+)(o)-dependent, and the suggestion has been made that pH and K(+)(o) may regulate the channels via a common mechanism. Here we discuss P/C type inactivation as the common pathway by which some Kv channels become unavailable at acid pH and lowered K(+)(o). It is suggested that binding of protons to a regulatory site in the outer pore mouth of some Kv channels favors transitions to the inactivated state, whereas K(+) ions exert countereffects. We suggest that modulation of the number of excitable voltage-gated K(+) channels in the open vs inactivated states of the channels by physiological H(+) and K(+) concentrations represents an important pathway to control Kv channel function in health and disease.


Assuntos
Líquido Extracelular/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potássio/metabolismo , Sequência de Aminoácidos , Condutividade Elétrica , Líquido Extracelular/química , Humanos , Concentração de Íons de Hidrogênio , Canal de Potássio Kv1.5 , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Potássio/química
5.
J Gen Physiol ; 140(3): 279-91, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22930802

RESUMO

Hyperpolarization-activated cyclic nucleotide-sensitive nonselective cation (HCN) channels are activated by membrane hyperpolarization, in contrast to the vast majority of other voltage-gated channels that are activated by depolarization. The structural basis for this unique characteristic of HCN channels is unknown. Interactions between the S4-S5 linker and post-S6/C-linker region have been implicated previously in the gating mechanism of HCN channels. We therefore introduced pairs of cysteines into these regions within the sea urchin HCN channel and performed a Cd(2+)-bridging scan to resolve their spatial relationship. We show that high affinity metal bridges between the S4-S5 linker and post-S6/C-linker region can induce either a lock-open or lock-closed phenotype, depending on the position of the bridged cysteine pair. This suggests that interactions between these regions can occur in both the open and closed states, and that these regions move relative to each other during gating. Concatenated constructs reveal that interactions of the S4-S5 linker and post-S6/C-linker can occur between neighboring subunits. A structural model based on these interactions suggests a mechanism for HCN channel gating. We propose that during voltage-dependent activation the voltage sensors, together with the S4-S5 linkers, drive movement of the lower ends of the S5 helices around the central axis of the channel. This facilitates a movement of the pore-lining S6 helices, which results in opening of the channel. This mechanism may underlie the unique voltage dependence of HCN channel gating.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Ativação do Canal Iônico/genética , Canais de Potássio/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Cádmio/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Cisteína/química , Cisteína/genética , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Químicos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Canais de Potássio/genética , Canais de Potássio/fisiologia , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Strongylocentrotus purpuratus/química
6.
FEBS J ; 275(24): 6159-67, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19016855

RESUMO

Twin-arginine translocase (Tat) is involved in the translocation of fully folded proteins in a process that is driven by the proton motive force. In most prokaryotes, the Tat system transports only a small proportion of secretory proteins, and Tat substrates are often cofactor-containing proteins that require folding before translocation. A notable exception is found in halophilic archaea (haloarchaea), which are predicted to secrete the majority of their proteins through the Tat pathway. In this study, we have analysed the translocation of a secretory protein (AmyH) from the haloarchaeon Haloarcula hispanica. Using both in vivo and in vitro translocation assays, we demonstrate that AmyH transport is Tat-dependent, and, surprisingly, that its secretion does not depend on the proton motive force but requires the sodium motive force instead.


Assuntos
Proteínas Arqueais/metabolismo , Produtos do Gene tat/metabolismo , Haloarcula/metabolismo , Proteínas de Transporte/metabolismo , Metabolismo Energético , Ionóforos/farmacologia , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Dobramento de Proteína , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico , Especificidade por Substrato
7.
Biophys J ; 90(4): 1212-22, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16326898

RESUMO

In the voltage-gated potassium channel Kv1.5, extracellular acidification decreases the peak macroscopic conductance and accelerates slow inactivation. To better understand the mechanistic basis for these two effects, we recorded unitary currents of Kv1.5 expressed in a mouse cell line (ltk-) using the voltage clamp technique both in cell-attached and excised outside-out patches. Single channel current amplitude at 100 mV (1.7 +/- 0.2 pA at pH 7.4, 1.7 +/- 0.2 pA at pH 6.4) and the single channel conductance between 0 and 100 mV (11.8 +/- 0.6 pS at pH 7.4 and 11.3 +/- 0.8 pS at pH 6.4) did not change significantly with pH. External acidification significantly decreased the number of active sweeps, and this reduction in channel availability accounted for most of the reduction of the peak macroscopic current. The results of runs analyses suggested the null sweeps occur in clusters, and the rate constants for the transition between clusters of null and active sweeps at pH 6.4 were slow (0.12 and 0.18 s(-1), to and from the active clusters, respectively). We propose that low pH facilitates a shift from an available mode (mode A) into an unavailable mode of gating (mode U). In addition to promoting mode U gating, external acidification accelerates depolarization-induced inactivation, which is manifest at the single channel level as a reduction of the mean burst length and an apparent increase of the interburst interval. These effects of external acidification, which are thought to reflect the protonation of a histidine residue in the turret (H-463), point to an important role for the turret in the regulation of channel availability and inactivation.


Assuntos
Histidina/química , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.5/fisiologia , Animais , Linhagem Celular , Eletrofisiologia , Concentração de Íons de Hidrogênio , Camundongos , Técnicas de Patch-Clamp
8.
Eur Biophys J ; 36(1): 23-34, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16902793

RESUMO

Internal Mg2+ blocks many potassium channels including Kv1.5. Here, we show that internal Mg2+ block of Kv1.5 induces voltage-dependent current decay at strongly depolarised potentials that contains a component due to acceleration of C-type inactivation after pore block. The voltage-dependent current decay was fitted to a bi-exponential function (tau(fast) and tau(slow)). Without Mg2+, tau(fast) and tau(slow) were voltage-independent, but with 10 mM Mg2+, tau(fast) decreased from 156 ms at +40 mV to 5 ms at +140 mV and tau(slow) decreased from 2.3 s to 206 ms. With Mg2+, tail currents after short pulses that allowed only the fast phase of decay showed a rising phase that reflected voltage-dependent unbinding. This suggested that the fast phase of voltage-dependent current decay was due to Mg2+ pore block. In contrast, tail currents after longer pulses that allowed the slow phase of decay were reduced to almost zero suggesting that the slow phase was due to channel inactivation. Consistent with this, the mutation R487V (equivalent to T449V in Shaker) or increasing external K+, both of which reduce C-type inactivation, prevented the slow phase of decay. These results are consistent with voltage-dependent open-channel block of Kv1.5 by internal Mg2+ that subsequently induces C-type inactivation by restricting K+ filling of the selectivity filter from the internal solution.


Assuntos
Canal de Potássio Kv1.5/química , Canal de Potássio Kv1.5/genética , Magnésio/química , Mutação , Canais de Potássio/química , Sítios de Ligação , Biofísica/métodos , Eletrofisiologia , Humanos , Ativação do Canal Iônico , Cinética , Magnésio/farmacologia , Potenciais da Membrana , Ligação Proteica
9.
J Physiol ; 541(Pt 1): 9-24, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12015417

RESUMO

Using human Kv1.5 channels expressed in HEK293 cells we assessed the ability of H+o to mimic the previously reported action of Zn(2+) to inhibit macroscopic hKv1.5 currents, and using site-directed mutagenesis, we addressed the mechanistic basis for the inhibitory effects of H(+)(o) and Zn(2+). As with Zn(2+), H(+)(o) caused a concentration-dependent, K(+)(o)-sensitive and reversible reduction of the maximum conductance (g(max)). With zero, 5 and 140 mM K(+)(o) the pK(H) for this decrease of g(max) was 6.8, 6.2 and 6.0, respectively. The concentration dependence of the block relief caused by increasing [K(+)](o) was well fitted by a non-competitive interaction between H(+)(o) and K(+)(o), for which the K(D) for the K(+) binding site was 0.5-1.0 mM. Additionally, gating current analysis in the non-conducting mutant hKv1.5 W472F showed that changing from pH 7.4 to pH 5.4 did not affect Q(max) and that charge immobilization, presumed to be due to C-type inactivation, was preserved at pH 5.4. Inhibition of hKv1.5 currents by H+o or Zn(2+) was substantially reduced by a mutation either in the channel turret (H463Q) or near the pore mouth (R487V). In light of the requirement for R487, the homologue of Shaker T449, as well as the block-relieving action of K(+)(o), we propose that H(+) or Zn(2+) binding to histidine residues in the pore turret stabilizes a channel conformation that is most likely an inactivated state.


Assuntos
Bloqueadores dos Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Prótons , Zinco/farmacologia , Algoritmos , Sequência de Aminoácidos , Ligação Competitiva/efeitos dos fármacos , Césio/farmacologia , Estimulação Elétrica , Eletrofisiologia , Espaço Extracelular/metabolismo , Espaço Extracelular/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Cinética , Canal de Potássio Kv1.5 , Potenciais da Membrana/fisiologia , Mutação/genética , Mutação/fisiologia , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio/genética
10.
Biophys J ; 86(4): 2238-50, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15041663

RESUMO

By examining the consequences both of changes of [K+]o and of point mutations in the outer pore mouth, our goal was to determine if the mechanism of the block of Kv1.5 ionic currents by external Ni2+ is similar to that for proton block. Ni2+ block is inhibited by increasing [K+]o, by mutating a histidine residue in the pore turret (H463Q) or by mutating a residue near the pore mouth (R487V) that is the homolog of Shaker T449. Aside from a slight rightward shift of the Q-V curve, Ni2+ had no effect on gating currents. We propose that, as with Ho+, Ni2+ binding to H463 facilitates an outer pore inactivation process that is antagonized by Ko+ and that requires R487. However, whereas Ho+ substantially accelerates inactivation of residual currents, Ni2+ is much less potent, indicating incomplete overlap of the profiles of these two metal ions. Analyses with Co2+ and Mn2+, together with previous results, indicate that for the first-row transition metals the rank order for the inhibition of Kv1.5 in 0 mM Ko+ is Zn2+ (KD approximately 0.07 mM) > or = Ni2+) (KD approximately 0.15 mM) > Co2+ (KD approximately 1.4 mM) > Mn2+ (KD > 10 mM).


Assuntos
Ativação do Canal Iônico/fisiologia , Níquel/farmacologia , Mutação Puntual/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Potássio/metabolismo , Animais , Cátions/metabolismo , Células Cultivadas , Clonagem Molecular , Fibroblastos/fisiologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Potássio Kv1.5 , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA