RESUMO
There is growing concern regarding the health and safety issues of endocrine-disrupting chemicals (EDCs). Long-term exposure to EDCs has serious adverse health effects through both hormone-direct and hormone-indirect ways. Accordingly, some EDCs can be a pathogen and an inducer to the susceptibility of disease, even if they have a very low affinity on the estrogen receptor, or no estrogenic effect. Endoplasmic reticulum (ER) stress recently attracted attention in this research area. Because ER and ER stress could be key regulators of the EDC's adverse effects, such as the malfunction of the organ, as well as the death, apoptosis, and proliferation of a cell. In this review, we focused on finding evidence which shows that EDCs could be a trigger for ER stress and provide specific examples of EDCs, which are known to cause ER stress currently.
Assuntos
Disruptores Endócrinos/efeitos adversos , Retículo Endoplasmático/efeitos dos fármacos , Animais , Apoptose , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Resposta a Proteínas não Dobradas/efeitos dos fármacosRESUMO
Recent data supporting any benefit of stem cell therapy for ischemic heart disease have suggested paracrine-based mechanisms via extracellular vesicles (EVs) including exosomes. We have previously engineered cardiac-derived progenitor cells (CDCs) to express a peptide inhibitor, ßARKct, of G protein-coupled receptor kinase 2, leading to improvements in cell proliferation, survival, and metabolism. In this study, we tested whether ßARKct-CDC EVs would be efficacious when applied to stressed myocytes in vitro and in vivo. When isolated EVs from ßARKct-CDCs and control GFP-CDCs were added to cardiomyocytes in culture, they both protected against hypoxia-induced apoptosis. We tested whether these EVs could protect the mouse heart in vivo, following exposure either to myocardial infarction (MI) or acute catecholamine toxicity. Both types of EVs significantly protected against ischemic injury and improved cardiac function after MI compared with mice treated with EVs from mouse embryonic fibroblasts; however, ßARKct EVs treated mice did display some unique beneficial properties including significantly altered pro- and anti-inflammatory cytokines. Importantly, in a catecholamine toxicity model of heart failure (HF), myocardial injections of ßARKct-containing EVs were superior at preventing HF compared with control EVs, and this catecholamine toxicity protection was recapitulated in vitro. Therefore, introduction of the ßARKct into cellular EVs can have improved reparative properties in the heart especially against catecholamine damage, which is significant as sympathetic nervous system activity is increased in HF.NEW & NOTEWORTHY ßARKct, the peptide inhibitor of GRK2, improves survival and metabolic functions of cardiac-derived progenitor cells. As any benefit of stem cells in the ischemic and injured heart suggests paracrine mechanisms via secreted EVs, we investigated whether CDC-ßARKct engineered EVs would show any benefit over control CDC-EVs. Compared with control EVs, ßARKct-containing EVs displayed some unique beneficial properties that may be due to altered pro- and anti-inflammatory cytokines within the vesicles.
Assuntos
Vesículas Extracelulares/transplante , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Transplante de Células-Tronco , Animais , Apoptose , Hipóxia Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Comunicação Parácrina , Peptídeos/genética , Ratos , Proteínas Recombinantes/genética , Recuperação de Função Fisiológica , Transdução de Sinais , Células-Tronco/metabolismoRESUMO
OBJECTIVE: Vascular smooth muscle cells (VSMCs) modulate their phenotype between synthetic and contractile states in response to environmental changes; this modulation plays a crucial role in the pathogenesis of restenosis and atherosclerosis. Here, we identified fibroblast growth factor 12 (FGF12) as a novel key regulator of the VSMC phenotype switch. APPROACH AND RESULTS: Using murine models and human specimens, we found that FGF12 was highly expressed in contractile VSMCs of normal vessel walls but was downregulated in synthetic VSMCs from injured and atherosclerotic vessels. In human VSMCs, FGF12 expression was inhibited at the transcriptional level by platelet-derived growth factor-BB. Gain- and loss-of-function experiments showed that FGF12 was both necessary and sufficient for inducing and maintaining the quiescent and contractile phenotypes of VSMCs. FGF12 inhibited cell proliferation through the p53 pathway and upregulated the key factors involved in VSMC lineage differentiation, such as myocardin and serum response factor. Such FGF12-induced phenotypic change was mediated by the p38 MAPK (mitogen-activated protein kinase) pathway. Moreover, FGF12 promoted the differentiation of mouse embryonic stem cells and the transdifferentiation of human dermal fibroblasts into SMC-like cells. Furthermore, adenoviral infection of FGF12 substantially decreased neointima hyperplasia in a rat carotid artery injury model. CONCLUSIONS: In general, FGF family members induce a synthetic VSMC phenotype. Interestingly, the present study showed the unanticipated finding that FGF12 belonging to FGF family, strongly induced the quiescent and contractile VSMC phenotypes and directly promoted VSMC lineage differentiation. These novel findings suggested that FGF12 could be a new therapeutic target for treating restenosis and atherosclerosis.
Assuntos
Doenças das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/metabolismo , Diferenciação Celular , Plasticidade Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Regiões 5' não Traduzidas , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Becaplermina , Sítios de Ligação , Doenças das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Plasticidade Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Genótipo , Humanos , Hiperplasia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Fosfatidilinositol 3-Quinase/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-sis/farmacologia , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais , Transcrição Gênica , Transfecção , Vasoconstrição , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
We examined whether a shift in macrophage phenotype could be therapeutic for myocardial infarction (MI). The mouse macrophage cell line RAW264.7 was stimulated with peptidoglycan (PGN), with or without 5-azacytidine (5AZ) treatment. MI was induced by ligation of the left anterior descending coronary artery in rats, and the rats were divided into two groups; a saline-injection group and a 5AZ-injection group (2.5 mg/kg/day, intraperitoneal injection). LV function was evaluated and immunohistochemical analyses were performed 2 weeks after MI. Cardiac fibrosis was induced by angiotensin II (AngII) infusion with or without 5AZ (5 mg/kg/day) in mice. Nitric oxide was produced by PGN, which was reduced by 77.87% after 5AZ treatment. Both induction of inducible nitric oxide synthase (iNOS) and iNOS promoter activity by PGN were inhibited by 5AZ. Ejection fraction (59.00 ± 8.03% versus 42.52 ± 2.58%), contractility (LV dP/dt-max, 8299.76 ± 411.56 mmHg versus 6610.36 ± 282.37 mmHg) and relaxation indices (LV dP/dt-min, -4661.37 ± 210.73 mmHg versus -4219.50 ± 162.98 mmHg) were improved after 5AZ administration. Cardiac fibrosis in the MI+5AZ was 8.14 ± 1.00%, compared with 14.93 ± 2.98% in the MI group (P < 0.05). Arginase-1(+)CD68(+) macrophages with anti-inflammatory phenotype were predominant in the infarct border zone of the MI+5AZ group, in comparison with the MI group. AngII-induced cardiac fibrosis was also attenuated after 5AZ administration. In cardiac fibroblasts, pro-fibrotic mediators and cell proliferation were increased by AngII, and these increases were attenuated after 5AZ treatment. 5AZ exerts its cardiac protective role through modulation of macrophages and cardiac fibroblasts.
Assuntos
Azacitidina/farmacologia , Fibrose/prevenção & controle , Macrófagos/patologia , Infarto do Miocárdio/prevenção & controle , Óxido Nítrico/metabolismo , Disfunção Ventricular Esquerda/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Western Blotting , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/metabolismo , Fibrose/patologia , Técnicas Imunoenzimáticas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Óxido Nítrico Sintase/metabolismo , Peptidoglicano/farmacologia , Fenótipo , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Remodelação VentricularRESUMO
BACKGROUND: Angiogenesis is the main therapeutic mechanism of cell therapy for cardiovascular diseases, but diabetes is reported to reduce the function and number of progenitor cells. Therefore, we studied the effect of streptozotocin-induced diabetes on the bone marrow-mesenchymal stem cell (MSC) function, and examined whether diabetes-impaired MSC could be rescued by pretreatment with oxytocin. RESULTS: MSCs were isolated and cultured from diabetic (DM) or non-diabetic (non-DM) rat, and proliferation rate was compared. DM-MSC was pretreated with oxytocin and compared with non-DM-MSC. Angiogenic capacity was estimated by tube formation and Matrigel plug assay, and therapeutic efficacy was studied in rat myocardial infarction (MI) model.The proliferation and angiogenic activity of DM-MSC were severely impaired but significantly improved by pretreatment with oxytocin. Krüppel-like factor 2 (KLF2), a critical angiogenic factor, was dramatically reduced in DM-MSC and significantly restored by oxytocin. In the Matrigel plug assay, vessel formation of DM-BMSCs was attenuated but was recovered by oxytocin. In rat MI model, DM-MSC injection did not ameliorate cardiac injury, whereas oxytocin-pretreated DM-MSC improved cardiac function and reduced fibrosis. CONCLUSIONS: Our results show that diabetes influenced MSC by reducing angiogenic capacity and therapeutic potential. We demonstrate the striking effect of oxytocin on stem cell dysfunction and suggest the use of oxytocin as a priming reagent in autologous stem cell therapy.
Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Ocitócicos/farmacologia , Ocitocina/farmacologia , Pele/irrigação sanguínea , Animais , Biomarcadores/metabolismo , Glicemia/metabolismo , Células Cultivadas , Colágeno/química , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Combinação de Medicamentos , Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Laminina/química , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos Nus , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Proteoglicanas/química , Ratos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/patologia , EstreptozocinaRESUMO
In this study, we established and characterized human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) from four different donors. However, the hUCB-MSCs showed remarkable variations in their therapeutic efficacy for repairing rat infarcted myocardium (including the process of angiogenesis) 8 weeks after transplantation. In addition, we observed that the level of vascular endothelial growth factor (VEGF) is correlated with the therapeutic efficacy of the four hUCB-MSCs. Next, to investigate the practical application of hUCB-MSCs, we searched for surface signature molecules that could serve as indicators of therapeutic efficacy. The gene for N-cadherin was the only cell surface gene that was highly expressed in the most effective hUCB-MSCs, both at the transcriptional and translational levels. We observed downregulation and upregulation of VEGF in response to N-cadherin blocking and N-cadherin overexpression, respectively. Activation of extracellular signal-regulated kinase (ERK), but not protein kinase B, was increased when N-cadherin expression was increased, whereas disruption of N-cadherin-mediated cell-cell contact induced suppression of ERK activation and led to VEGF downregulation. Moreover, by investigating hUCB-MSCs overexpressing N-cadherin or N-cadherin knockdown hUCB-MSCs, we confirmed the in vivo function of N-cadherin. In addition, we observed that DiI-labeled hUCB-MSCs express N-cadherin in the peri-infarct area and interact with cardiomyocytes.
Assuntos
Caderinas/metabolismo , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Sangue Fetal/citologia , Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/terapia , Animais , Biomarcadores/metabolismo , Caderinas/genética , Comunicação Celular/genética , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Coração/fisiologia , Humanos , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley , Regeneração , Transdução de Sinais , Doadores de Tecidos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular Esquerda , Remodelação VentricularRESUMO
Arsenic in inorganic form is a known human carcinogen; even low levels of arsenic can interfere with the endocrine system. In mammalian development, arsenic exposure can cause a malformation of fetuses and be lethal. This study examined the effects of sodium arsenite (SA) as the inorganic form of arsenic in embryonic bodies (EBs) with three germ layers in the developmental stage. This condition is closer to the physiological condition than a 2D cell culture. The SA treatment inhibited EBs from differentiating into cardiomyocytes. A treatment with 1 µM SA delayed the initiation of beating, presenting successful cardiomyocyte differentiation. In particular, mitochondria function analysis showed that SA downregulated the transcription level of the Complex IV gene. SA increased the fission form of mitochondrion identified by the mitochondria number and length. In addition, a treatment with D-penicillamine, an arsenic chelator, restored the beat of EBs against SA, but not mitochondrial dysfunction. These findings suggest that SA is a toxicant that induces mitochondrial damage and interferes with myocardial differentiation and embryogenesis. This study suggests that more awareness of SA exposure during pregnancy is required because even minuscule amounts have irreversible adverse effects on embryogenesis through mitochondria dysfunction.
RESUMO
The female reproductive system becomes fertile through the action of hormones involved in the hypothalamic-pituitary-ovarian axis. On the other hand, estrogen-like endocrine disruptors released into the environment come into contact with humans by various routes and affect the reproductive system. Exposure to these chemicals can cause problems with the reproductive process, from egg ovulation to implantation, or cause female reproductive diseases. These reproductive problems cause infertility. Decamethylcyclopentasiloxane (D5) is used for lubrication in silicone polymers, households, and personal care products. In the case of D5, it is discharged through factory wastewater and can bioaccumulate. Therefore, it accumulates in the human body. In this study, D5 was administered orally for four weeks to determine the effects of D5 on the reproductive process. As a result, D5 increases the number of follicles in the ovary and suppresses the expression of genes related to the growth of follicles. In addition, it increases the gonadotropin hormone, inducing estradiol enhancement and progesterone reduction. Because of these changes in the reproductive system when exposed to D5, the industry should reconsider using D5.
RESUMO
Oxytocin stimulates the cardiomyogenesis of embryonic stem cells and adult cardiac stem cells. We previously reported that oxytocin has a promigratory effect on umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). In this study, UCB-MSCs were cultured with oxytocin and examined for their therapeutic effect in an infarcted heart. UCB-MSCs were pretreated with 100 nM oxytocin and cardiac markers were assessed by immunofluorescence staining. Next, oxytocin-supplemented USC-MSCs (OT-USCs) were cocultured with hypoxia/reoxygenated neonatal rat cardiomyocytes and cardiac markers and dye transfer were then examined. For the in vivo study, ischemia/reperfusion was induced in rats, and phosphate-buffered saline (group 1), 1-day OT-USCs (group 2), or 7-day OT-USCs (group 3) were injected into the infarcted myocardium. Two weeks after injection, histological changes and cardiac function were examined. UCB-MSCs expressed connexin 43 (Cnx43), cardiac troponin I (cTnI), and α-sarcomeric actin (α-SA) after oxytocin supplementation and coculture with cardiomyocytes. Functional gap junction formation was greater in group 3 than in groups 1 and 2. Cardiac fibrosis and macrophage infiltration were lower in group 3 than in group 2. Restoration of Cnx43 expression was greater in group 3 than in group 2. Cnx43- and cTnI-positive OT-USCs in the peri-infarct zone were observed in group 2 and more frequently in group 3. The ejection fraction (EF) was increased in groups 2 and 3 in 2 weeks. The improved EF was sustained for 4 weeks only in group 3. Our findings suggest that the supplementation of UCB-MSCs with oxytocin can contribute to the cardiogenic potential for cardiac repair.
Assuntos
Sangue Fetal/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Ocitocina/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Sangue Fetal/citologia , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/cirurgia , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-DawleyRESUMO
Optimization of the specific affinity of cardiac delivery vector could significantly improve the efficiency of gene/protein delivery, yet no cardiac vectors to date have sufficient target specificity for myocardial infarction (MI). In this study, we explored bacterial tropism for infarcted myocardium based on our previous observations that certain bacteria are capable of targeting the hypoxic regions in solid tumors. Out of several Escherichia coli or Salmonella typhimurium strains, the S. typhimurium defective in the synthesis of ppGpp (ΔppGpp S. typhimurium) revealed accumulation and selective proliferation in the infarcted myocardium without spillover to noncardiac tissue. The Salmonellae that were engineered to express a variant of Renilla luciferase gene (RLuc8), under the control of the E. coli arabinose operon promoter (P(BAD)), selectively targeted and delivered RLuc8 in the infarcted myocardium only upon injection of L-arabinose. An examination of the infarct size before and after infection, and estimations of C-reactive protein (CRP) and procalcitonin indicated that intravenous injection of ΔppGpp S. typhimurium did not induce serious local or systemic immune reactions. This current proof-of-principle study demonstrates for the first time the capacity of Salmonellae to target infarcted myocardium and to serve as a vehicle for the selective delivery of therapeutic agents in MI.
Assuntos
Escherichia coli/isolamento & purificação , Coração/microbiologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/microbiologia , Salmonella typhimurium/isolamento & purificação , Animais , Arabinose/farmacologia , Western Blotting , Proteína C-Reativa/análise , Ciprofloxacina/farmacologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos , Ligases/deficiência , Ligases/genética , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Engenharia de Proteínas , Ratos , Ratos Sprague-Dawley , TropismoRESUMO
Exposure to neurodevelopmental toxicants can cause permanent brain injury. Hance, determining the neurotoxicity of unknown substances is essential for the safety of substance. As an alternative method to animal studies, developmental neurotoxicity test (DNT) and the first discriminant function (DF) were established in previous study. This study aimed to increase the predictability of the DNT method and perform a mobility test. Two endpoints of 29 newly investigated substances were used to establish a second-generation DF (2nd GDF). As two endpoints, the half-inhibitory concentration of the cell viability (IC50) was determined using a cell counting kit-8 assay. The half-inhibitory concentration of differentiation (ID50) was determined by measuring the green fluorescent protein (GFP) intensity in 46C cells. The substances were treated dose-dependently to measure IC50 and ID50. The 2nd GDF classified 29 chemicals accurately as toxic and non-toxic. Four participants of three independent laboratories were enrolled to test the mobility. The results of the test set were highly accurate in reproducibility (100% of accuracy, sensitivity, and specificity) and mobility (accuracy 93.33%, sensitivity 90.91%, and specificity 100%). In conclusion, the protocol is transferable, reproducible, and accurate. Therefore, this could be a standardizing method for determining a neurotoxicant as an alternative for animal experiments.
Assuntos
Síndromes Neurotóxicas , Testes de Toxicidade , Animais , Diferenciação Celular , Sobrevivência Celular , Humanos , Síndromes Neurotóxicas/etiologia , Reprodutibilidade dos Testes , Testes de Toxicidade/métodosRESUMO
Mast cells are multifunctional cells containing various mediators, such as cytokines, tryptase, and histamine, and they have been identified in infarct myocardium. Here, we elucidated the roles of mast cells in a myocardial infarction (MI) rat model. We studied the physiological and functional roles of mast cell granules (MCGs), isolated from rat peritoneal fluid, on endothelial cells, neonatal cardiomyocytes, and infarct heart (1-hour occlusion of left coronary artery followed by reperfusion). The number of mast cells had two peak time points of appearance in the infarct region at 1day and 21days after MI induction in rats (p<0.05 in each compared with sham-operated heart). Simultaneous injection of an optimal dose of MCGs modulated the microenvironment and resulted in the increased infiltration of macrophages and decreased apoptosis of cardiomyocytes without change in the mast cell number in infarct myocardium. Moreover, MCG injection attenuated the progression of MI through angiogenesis and preserved left ventricular function after MI. MCG-treated cardiomyocytes were more resistant to hypoxic injury through phosphorylation of Akt, and MCG-treated endothelial cells showed enhanced migration and tube formation. We have shown that MCGs have novel cardioprotective roles in MI via the prolonged survival of cardiomyocytes and the induction of angiogenesis.
Assuntos
Grânulos Citoplasmáticos/metabolismo , Mastócitos/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Apoptose/fisiologia , Western Blotting , Hipóxia Celular/fisiologia , Células Cultivadas , Hemodinâmica , Humanos , Masculino , Mastócitos/fisiologia , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
When myocardial function is compromised as in heart failure (HF), there is activation of the sympathetic nervous system with elevated circulating catecholamine levels. These catecholamines activate cardiac and extra-cardiac adrenergic receptors (ARs). Interest in secreted extracellular vesicles (EVs) from the heart is growing and in HF, it is not known whether excessive activation of α- or ß-adrenergic receptors (ARs) could induce specific changes in EV content. In this study, we have evaluated, by next generation sequencing, the small RNA content, including micro-RNAs (miRs), of circulating EVs of mice exposed to chronic selective α- or ß- AR stimulation. EVs from mouse blood were purified by differential ultracentrifugation resulting in EVs with an average size of 116.6 ± 4.8 nm that by immunoblotting included protein markers of EVs. We identified the presence of miRs in blood EVs using miR-21-5p and -16-5p real-time PCR as known constituents of blood exosomes that make up a portion of EVs. We next performed next generation sequencing (NGS) of small non-coding RNAs found in blood EVs from mice following 7 days of chronic treatment with isoproterenol (ISO) or phenylephrine (PE) to stimulate α- or ß-ARs, respectively. PE increased the percent of genomic repeat region reads and decreased the percent of miR reads. In miR expression analysis, PE and ISO displayed specific patterns of miR expression that suggests differential pathway regulation. The top 20 KEGG pathways predicted by differential expressed miRs show that PE and ISO share 11 of 20 pathways analyzed and reveal also key differences including three synapse relative pathways induced by ISO relative to PE treatment. Both α-and ß-AR agonists can alter small RNA content of circulating blood EVs/exosomes including differential expression and loading of miRs that indicate regulation of distinct pathways. This study provides novel insight into chronic sympathetic nervous system activation in HF where excessive catecholamines may not only participate in pathological remodeling of the heart but alter other organs due to secretion of EVs with altered miR content.
Assuntos
Doenças Cardiovasculares/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/sangue , Receptores Adrenérgicos alfa/sangue , Receptores Adrenérgicos beta/sangue , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , CamundongosRESUMO
Recent studies show that oxytocin has various effects on cellular behaviors. Oxytocin is reported to stimulate cardiomyogenesis of embryonic stem cells and endothelial cell proliferation. Mesenchymal stem cells (MSCs) are widely used for cardiac repair, and we elucidated the effect of oxytocin on umbilical cord derived-MSCs (UCB-MSCs). UCB-MSCs were pretreated with oxytocin (100 nM) and washed with saline prior to experiments. To evaluate their angiogenic potential and migration activity, tube formation assay and Boyden chamber assay were performed. For in vivo study, ischemia-reperfusion was induced in rats, and UCB-MSCs with or without oxytocin pretreatment were injected into the infarcted myocardium to evaluate the engraftment of injected cells. Histological and hemodynamic studies were performed. Oxytocin-treated UCB-MSCs showed a decrease in tube formation but a drastic increase in transwell migration activity. The transcription level of matrix metalloproteinase (MMP)-2 was increased in oxytocin-treated UCB-MSCs. Knock-down of MMP-2 by use of siRNA restored the tube formation, while reducing transmigration activity. In rats injected with oxytocin-treated UCB-MSCs, cardiac fibrosis and CD68 infiltration in the peri-infarct zone were reduced, whereas cell engraftment and connexin43 expression were greater than in rats injected with untreated UCB-MSCs. By contrast, angiogenesis did not differ significantly between the two groups. Cardiac contractility was higher in the group injected with oxytocin-treated UCB-MSCs than in the group injected with phosphate-buffered saline alone. Collectively, oxytocin is an effective priming reagent for stem cells for application to damaged heart tissue.
Assuntos
Movimento Celular , Sangue Fetal/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Ocitocina/metabolismo , Traumatismo por Reperfusão/terapia , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-DawleyRESUMO
Despite development of therapeutic modalities, myocardial ischemia-reperfusion (I/R) injury remains an important cause of cardiac dysfunction. Multiple strategies exist experimentally, but few are clinically available. Nuclear factor kappa-B (NF-κB) is a key transcription factor in the inflammatory response and is implicated in I/R injury. We hypothesized that the NFκB inhibitor BAY 11-7082 (BAY) would decrease the extent of injury after myocardial I/R. Hypoxia-reoxygenation (H/R) was induced in rat neonatal cardiomyocytes with or without BAY pretreatment. NF-κB activation, vascular cell adhesion molecule (VCAM)-1, and monocyte chemoattractant protein (MCP)-1 were assayed by immunocytochemistry, Western blot or reverse transcriptase-polymerase chain reaction (RT-PCR). Sprague-Dawley rats (n = 7) were administered BAY (130 µg/kg) and I/R was induced by ligation of the left anterior descending artery (LAD) for 30 minutes followed by reperfusion. Infarct size was analyzed after 24 hours. At 2 weeks, echocardiography was performed to evaluate ventricular function and hearts were analyzed for fibrosis and apoptosis. BAY treatment inhibited NF-κB p65 activation, as well as VCAM-1 and MCP-1 expression induced by H/R in cardiomyocytes. Compared with control rats, BAY pretreated rats showed reduced infarct size. Echocardiograms demonstrated preserved systolic function as a fractional shortening in the BAY+I/R group (P < 0.05). Fibrosis was reduced in the BAY+I/R group (P < 0.05) and apoptosis was also reduced in the BAY+I/R group (P < 0.05).In the rat myocardial I/R injury model, BAY significantly reduced the infarct size, and preserved myocardial function. These data demonstrate that a currently available and well-tolerated inhibitor of NF-κB can decrease the risk of myocardial injury associated with I/R.
Assuntos
Apoptose/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Sulfonas/farmacologia , Animais , Western Blotting , Células Cultivadas , Quimiocina CCL2/sangue , Modelos Animais de Doenças , Imuno-Histoquímica , Inflamação/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Nitrilas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/fisiopatologia , Sulfonas/uso terapêuticoRESUMO
An angiotensin receptor blocker (ARB) mitigates cardiac remodeling after myocardial infarction (MI). Here, we investigated the effect of fimasartan, a new ARB, on cardiac remodeling after MI. Spragueâ»Dawley rats were assigned into 3 groups: surgery only (sham group, n = 7), MI without (MI-only group, n = 13), and MI with fimasartan treatment (MI + Fima group, n = 16). MI was induced by the permanent ligation of the left anterior descending artery. Treatment with fimasartan (10 mg/kg) was initiated 24 h after MI and continued for 7 weeks. Rats in the MI + Fima group had a higher mean ejection fraction (66.3 ± 12.5% vs. 51.3 ± 14.8%, P = 0.002) and lower left ventricular end-diastolic diameter (9.14 ± 1.11 mm vs. 9.91 ± 1.43 mm, P = 0.045) than those in the MI-only group at 7 weeks after MI. The infarct size was lower in the MI + Fima than in the MI group (P < 0.05). A microarray analysis revealed that the expression of genes related to the lipid metabolism and mitochondrial membrane ion transporters were upregulated, and those involved in fibrosis and inflammation were downregulated by fimasartan. Fimasartan attenuates cardiac remodeling and dysfunction in rats after MI and may prevent the progression to heart failure after MI.
RESUMO
Inhibition of Na(+),K(+)-ATPase has been implicated in the pathogenesis of hypertension via its effect on smooth muscle reactivity and myocardial contractility. We recently demonstrated that translationally controlled tumor protein (TCTP) interacts with the 3rd cytoplasmic domain of Na(+),K(+)-ATPase alpha(1)-subunit and acts as its cytoplasmic repressor. Therefore, we hypothesized that repression of Na(+),K(+)-ATPase by overexpressed TCTP might underlie the development of hypertension. In the present study, we confirmed that transgenic mice overexpressing TCTP developed systemic arterial hypertension at about 6 weeks after birth. Vascular smooth muscle of TCTP-overexpressing transgenic mice also displayed augmented contractile response to vasoconstrictors and attenuated relaxation response to vasodilators. These responses seem to be caused by reduced Na(+),K(+)-ATPase activity and increased intracellular calcium, suggesting that inhibition of Na(+),K(+)-ATPase by overexpression of TCTP is involved in the pathogenesis of hypertension. This study provides a new link between alteration of sodium pump activity and hypertension in vivo, and suggests that TCTP might be a therapeutic target for the treatment of hypertension.
Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Hipertensão/enzimologia , Hipertensão/fisiopatologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Animais , Pressão Sanguínea , Sinalização do Cálcio , Galinhas , Expressão Gênica , Células HeLa , Humanos , Hipertensão/diagnóstico por imagem , Técnicas In Vitro , Espaço Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Muscular , Relaxamento Muscular , Músculo Liso Vascular/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteína Tumoral 1 Controlada por Tradução , UltrassonografiaRESUMO
To develop the functionalized superparamagnetic iron oxide nanoparticles (SPIONs) demonstrating the capacities to be delivered in antigen presenting cells specifically and to be dispersed in physiological environment stably, the nanoparticle surface was coated with mannan that induces receptor-mediated endocytosis. Mannan is a water-soluble polysaccharide having high content of D-mannose residues to be recognized by mannose receptors on immunate macrophages. Mannan-coated SPIONs (mannan-SPIONs) were prepared by traditional coprecipitation method, followed by a thermochemical treatment and post-coating with mannan solution. Poly(vinyl alcohol)-coated SPIONs (PVA-SPIONs) were also prepared as a control. Upon characterization, mannan-SPIONs were proven to be suitable for MR imaging due to small size, excellent stability in ferrofluid, and low cytotoxicity. In addition mannan-SPIONs exhibited enhanced targeted delivery efficiency to macrophages than PVA-SPIONs in vitro and in vivo. Therefore, mannan as a coating material not only prevented the aggregation of SPIONs in physiological medium but also provided a capacity to be delivered in antigen presenting cells specifically, suggesting of the potential utility of mannan-SPIONs as a macrophage-targeting MRI contrast agent.
Assuntos
Compostos Férricos/química , Macrófagos/efeitos dos fármacos , Mananas/química , Nanopartículas , Animais , Linhagem Celular , Camundongos , Microscopia Eletrônica de TransmissãoRESUMO
Little is known about the cardioprotective effects against heart failure (HF), the effects on differentiation of bone marrow-derived mononuclear cell (BMMNC), and the biocompatibility of BMMNC-seeded biodegradable poly-glycolide-co-caprolactone (PGCL) scaffolds in a myocardial infarction (MI) animal model. This study hypothesized that implantation of a BMMNC-seeded PGCL scaffold into the epicardial surface in a rat MI model would be biocompatible, induce BMMNC migration into infarcted myocardium, and effectively improve left ventricular (LV) systolic dysfunction. One week after the implantation of a BMMNC-seeded PGCL scaffold, BMMMC showed migration into the epicardial region. Four weeks after implantation, augmented neovascularization was observed in infarcted areas and in infarct border zones. Some BMMNCs exhibited the presence of alpha-MHC and troponin I, markers of differentiation into cardiomyocytes. In echocardiographic examinations, BMMNC-seeded PGCL scaffold and non-cell-seeded simple PGCL scaffold groups effectively reduced progressive LV dilatation and preserved LV systolic function as compared to control rat MI groups. Thus, BMMNC-seeded PGCL scaffolding influences BMMNC migration, differentiation to cardiomyocytes, and induction of neovascularization, ultimately effectively lessening LV remodeling and progressive LV systolic dysfunction. PGCL scaffolding can be considered as an effective treatment alternative in MI-induced advanced HF.
Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Monócitos/citologia , Monócitos/transplante , Infarto do Miocárdio/cirurgia , Poliésteres , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Modelos Animais de Doenças , Eletrocardiografia , Microscopia Eletrônica de Varredura , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Sprague-DawleyRESUMO
Covalent modification of proteins with polyethylene glycol (PEG) has become a well established drug enhancement strategy in the biopharmaceutical industry. The general benefits of PEGylation, such as prolonged serum half-lives or reduced in vivo immunogenicity, are well known. To date, the PEGylation process has been performed with purified proteins, which often requires additional multi-step purification steps to harvest the desired PEGylate. However, it would be beneficial for bioprocessing if 'renaturation,' i.e. in vitro refolding and 'modification,' and PEGylation can be integrated, especially for inclusion body proteins. We investigated the feasibility of protein PEGylation under denaturing conditions and of protein refolding with the attached PEG molecule. Using lipase as a model protein, PEGylation occurred in 8 M urea and covalently attached PEG did not appear to hinder subsequent refolding.