Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 50(2): 1194-1204, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36135795

RESUMO

PURPOSE: The amount of luminescent light detected in a scintillator is reduced with increased proton linear energy transfer (LET) despite receiving the same proton dose, through a phenomenon called quenching. This study evaluated the ability of a solar cell coated with scintillating powder (SC-SP) to measure therapeutic proton LET by measuring the quenching effect of the scintillating powder using a solar cell while simultaneously measuring the dose of the proton beam. METHODS: SC-SP was composed of a flexible thin film solar cell and scintillating powder. The LET and dose of the pristine Bragg peak in the 14 cm range were calculated using a validated Monte Carlo model of a double scattering proton beam nozzle. The SC-SP was evaluated by measuring the proton beam under the same conditions at specific depths using SC-SP and Markus chamber. Finally, the 10 and 20 cm range pristine Bragg peaks and 5 cm spread-out Bragg peak (SOBP) in the 14 cm range were measured using the SC-SP and the Markus chamber. LETs measured using the SC-SP were compared with those calculated using Monte Carlo simulations. RESULTS: The quenching factors of the SC-SP and solar cell alone, which were slopes of linear fit obtained from quenching correction factors according to LET, were 0.027 and 0.070 µm/keV (R2 : 0.974 and 0.975). For pristine Bragg peaks in the 10 and 20 cm ranges, the maximum differences between LETs measured using the SC-SP and calculated using Monte Carlo simulations were 0.5 keV/µm (15.7%) and 1.2 keV/µm (12.0%), respectively. For a 5 cm SOBP proton beam, the LET measured using the SC-SP and calculated using Monte Carlo simulations differed by up to 1.9 keV/µm (18.7%). CONCLUSIONS: Comparisons of LETs for pristine Bragg peaks and SOBP between measured using the SC-SP and calculated using Monte Carlo simulations indicated that the solar cell-based system could simultaneously measure both LET and dose in real-time and is cost-effective.


Assuntos
Terapia com Prótons , Prótons , Pós , Transferência Linear de Energia , Método de Monte Carlo
2.
Med Phys ; 50(1): 557-569, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35993665

RESUMO

PURPOSE: A real-time solar cell based in vivo dosimetry system (SC-IVD) was developed using a flexible thin film solar cell and scintillating powder. The present study evaluated the clinical feasibility of the SC-IVD in electron beam therapy. METHODS: A thin film solar cell was coated with 100 mg of scintillating powder using an optical adhesive to enhance the sensitivity of the SC-IVD. Calibration factors were obtained by dividing the dose, measured at a reference depth for 6-20 MeV electron beam energy, by the signal obtained using the SC-IVD. Dosimetric characteristics of SC-IVDs containing variable quantities of scintillating powder (0-500 mg) were evaluated, including energy, dose rate, and beam angle dependencies, as well as dose linearity. To determine the extent to which the SC-IVD affected the dose to the medium, doses at R90 were compared depending on whether the SC-IVD was on the surface. Finally, the accuracy of surface doses measured using the SC-IVD was evaluated by comparison with surface doses measured using a Markus chamber. RESULTS: Charge measured using the SC-IVD increased linearly with dose and was within 1% of the average signal according to the dose rate. The signal generated by the SC-IVD increased as the beam angle increased. The presence of the SC-IVD on the surface of a phantom resulted in a 0.5%-2.2% reduction in dose at R90 for 6-20 MeV electron beams compared with the bare phantom. Surface doses measured using the SC-IVD system and Markus chamber differed by less than 5%. CONCLUSIONS: The dosimetric characteristics of the SC-IVD were evaluated in this study. The results showed that it accurately measured the surface dose without a significant difference of dose in the medium when compared with the Markus chamber. The flexibility of the SC-IVD allows it to be attached to a patient's skin, enabling real-time and cost-effective measurement.


Assuntos
Elétrons , Dosimetria in Vivo , Humanos , Pós , Radiometria/métodos , Dosimetria Fotográfica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA