Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 366(2): 303-313, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29866790

RESUMO

Studies in animal models have suggested that nicotine, an agonist of nicotinic acetylcholine receptors, may have the potential to prevent and/or reverse the peripheral neuropathy induced by cancer chemotherapeutic drugs, such as paclitaxel and oxaliplatin. However, a large body of evidence suggests that nicotine may also stimulate lung tumor growth and/or interfere with the effectiveness of cancer chemotherapy. Whereas the reported proliferative effects of nicotine are highly variable, the antagonism of antitumor drug efficacy is more consistent, although this latter effect has been demonstrated primarily in cell culture studies. In contrast, in vitro and in vivo studies from our own laboratory indicate that nicotine fails to enhance the growth of nonsmall cell lung cancer cells or attenuate the effects of chemotherapy (paclitaxel). Given the inconsistencies in the literature, coupled with our own findings, the weight of evidence suggests that caution may be warranted in proposing to use nicotine to mitigate chemotherapy-induced peripheral neuropathy in cancer patients receiving chemotherapy. Conversely, clinical trials could be performed in patients who have completed therapy and are considered to be disease-free to determine whether nicotine, in the form of commercially available patches or gum, is effective in alleviating peripheral neuropathy symptoms.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Nicotina/farmacologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Animais , Humanos , Nicotina/uso terapêutico
2.
J Pharmacol Exp Ther ; 366(1): 169-183, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29540562

RESUMO

Although paclitaxel effectively treats various cancers, its debilitating peripheral neuropathic pain side effects often persist long after treatment has ended. Therefore, a compelling need exists for the identification of novel pharmacologic strategies to mitigate this condition. As inhibitors of monoacylglycerol lipase (MAGL), the primary hydrolytic enzyme of the endogenous cannabinoid, 2-arachidonyolglycerol, produces antinociceptive effects in numerous rodent models of pain, we investigated whether inhibitors of this enzyme (i.e., JZL184 and MJN110) would reverse paclitaxel-induced mechanical allodynia in mice. These drugs dose dependently reversed allodynia with respective ED50 values (95% confidence limit) of 8.4 (5.2-13.6) and 1.8 (1.0-3.3) mg/kg. Complementary genetic and pharmacologic approaches revealed that the antiallodynic effects of each drug require both cannabinoid receptors, CB1 and CB2 MJN110 reduced paclitaxel-mediated increased expression of monocyte chemoattractant protein-1 (MCP-1, CCL2) and phospho-p38 MAPK in dorsal root ganglia as well as MCP-1 in spinal dorsal horn. Whereas the antinociceptive effects of high dose JZL184 (40 mg/kg) underwent tolerance following 6 days of repeated dosing, repeated administration of a threshold dose (i.e., 4 mg/kg) completely reversed paclitaxel-induced allodynia. In addition, we found that the administration of MJN110 to control mice lacked intrinsic rewarding effects in the conditioned place preference (CPP) paradigm. However, it produced a CPP in paclitaxel-treated animals, suggesting a reduced paclitaxel-induced aversive state. Importantly, JZL184 did not alter the antiproliferative and apoptotic effects of paclitaxel in A549 and H460 non-small cell lung cancer cells. Taken together, these data indicate that MAGL inhibitors reverse paclitaxel-induced neuropathic pain without interfering with chemotherapeutic efficacy.


Assuntos
Antineoplásicos/efeitos adversos , Inibidores Enzimáticos/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Monoacilglicerol Lipases/antagonistas & inibidores , Nociceptividade/efeitos dos fármacos , Paclitaxel/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Biomarcadores/metabolismo , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/uso terapêutico , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Inflamação/metabolismo , Masculino , Camundongos , Fosfoproteínas/metabolismo , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Succinimidas/farmacologia , Succinimidas/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
J Pharmacol Exp Ther ; 364(1): 110-119, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29042416

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN), a consequence of peripheral nerve fiber dysfunction or degeneration, continues to be a dose-limiting and debilitating side effect during and/or after cancer chemotherapy. Paclitaxel, a taxane commonly used to treat breast, lung, and ovarian cancers, causes CIPN in 59-78% of cancer patients. Novel interventions are needed due to the current lack of effective CIPN treatments. Our studies were designed to investigate whether nicotine can prevent and/or reverse paclitaxel-induced peripheral neuropathy in a mouse model of CIPN, while ensuring that nicotine will not stimulate lung tumor cell proliferation or interfere with the antitumor properties of paclitaxel. Male C57BL/6J mice received paclitaxel every other day for a total of four injections (8 mg/kg, i.p.). Acute (0.3-0.9 mg/kg, i.p.) and chronic (24 mg/kg per day, s.c.) administration of nicotine respectively reversed and prevented paclitaxel-induced mechanical allodynia. Blockade of the antinociceptive effect of nicotine with mecamylamine and methyllycaconitine suggests that the reversal of paclitaxel-induced mechanical allodynia is primarily mediated by the α7 nicotinic acetylcholine receptor subtype. Chronic nicotine treatment also prevented paclitaxel-induced intraepidermal nerve fiber loss. Notably, nicotine neither promoted proliferation of A549 and H460 non-small cell lung cancer cells nor interfered with paclitaxel-induced antitumor effects, including apoptosis. Most importantly, chronic nicotine administration did not enhance Lewis lung carcinoma tumor growth in C57BL/6J mice. These data suggest that the nicotinic acetylcholine receptor-mediated pathways may be promising drug targets for the prevention and treatment of CIPN.


Assuntos
Hiperalgesia/tratamento farmacológico , Hiperalgesia/prevenção & controle , Nicotina/farmacologia , Paclitaxel/efeitos adversos , Animais , Antineoplásicos Fitogênicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Paclitaxel/farmacologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Receptores Colinérgicos/metabolismo , Taxoides/farmacologia
4.
Exp Neurol ; 320: 113010, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299179

RESUMO

Various antitumor drugs, including paclitaxel, frequently cause chemotherapy-induced peripheral neuropathy (CIPN) that can be sustained even after therapy has been completed. The current work was designed to evaluate R-47, an α7 nAChR silent agonist, in our mouse model of CIPN. R-47 was administered to male C57BL/6J mice prior to and during paclitaxel treatment. Additionally, we tested if R-47 would alter nicotine's reward and withdrawal effects. The H460 and A549 non-small cell lung cancer (NSCLC) cell lines were exposed to R-47 for 24-72 h, and tumor-bearing NSG mice received R-47 prior to and during paclitaxel treatment. R-47 prevents and reverses paclitaxel-induced mechanical hypersensitivity in mice in an α7 nAChR-dependent manner. No tolerance develops following repeated administration of R-47, and the drug lacks intrinsic rewarding effects. Additionally, R-47 neither changes the rewarding effect of nicotine in the Conditioned Place Preference test nor enhances mecamylamine-precipitated withdrawal. Furthermore, R-47 prevents paclitaxel-mediated loss of intraepidermal nerve fibers and morphological alterations of microglia in the spinal cord. Moreover, R-47 does not increase NSCLC cell viability, colony formation, or proliferation, and does not interfere with paclitaxel-induced growth arrest, DNA fragmentation, or apoptosis. Most importantly, R-47 does not increase the growth of A549 tumors or interfere with the antitumor activity of paclitaxel in tumor-bearing mice. These studies suggest that R-47 could be a viable and efficacious approach for the prevention and treatment of CIPN that would not interfere with the antitumor activity of paclitaxel or promote lung tumor growth.


Assuntos
Antineoplásicos/toxicidade , Agonistas Nicotínicos/farmacologia , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Piperazinas/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas , Tolerância a Medicamentos , Humanos , Neoplasias Pulmonares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Nicotina/farmacologia , Recompensa
5.
Neuropharmacology ; 117: 305-315, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28237807

RESUMO

Paclitaxel, one of the most commonly used cancer chemotherapeutic drugs, effectively extends the progression-free survival of breast, lung, and ovarian cancer patients. However, paclitaxel and other chemotherapy drugs elicit peripheral nerve fiber dysfunction or degeneration that leads to peripheral neuropathy in a large proportion of cancer patients. Patients receiving chemotherapy also often experience changes in mood, including anxiety and depression. These somatic and affective disorders represent major dose-limiting side effects of chemotherapy. Consequently, the present study was designed to develop a preclinical model of paclitaxel-induced negative affective symptoms in order to identify treatment strategies and their underlying mechanisms of action. Intraperitoneal injections of paclitaxel (8 mg/kg) resulted in the development and maintenance of mechanical and cold allodynia. Carboplatin, another cancer chemotherapeutic drug that is often used in combination with paclitaxel, sensitized mice to the nociceptive effects of paclitaxel. Paclitaxel also induced anxiety-like behavior, as assessed in the novelty suppressed feeding and light/dark box tests. In addition, paclitaxel-treated mice displayed depression-like behavior during the forced swim test and an anhedonia-like state in the sucrose preference test. In summary, paclitaxel produced altered behaviors in assays modeling affective states in C57BL/6J male mice, while increases in nociceptive responses were longer in duration. The characterization of this preclinical model of chemotherapy-induced allodynia and affective symptoms, possibly related to neuropathic pain, provides the basis for determining the mechanism(s) underlying severe side effects elicited by paclitaxel, as well as for predicting the efficacy of potential therapeutic interventions.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Comportamento Animal/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Dor Nociceptiva/induzido quimicamente , Paclitaxel/toxicidade , Anedonia/efeitos dos fármacos , Animais , Ansiedade/induzido quimicamente , Carboplatina/toxicidade , Depressão/induzido quimicamente , Epiderme/efeitos dos fármacos , Epiderme/inervação , Epiderme/patologia , Hiperalgesia/patologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Dor Nociceptiva/patologia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA