Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606803

RESUMO

The low-temperature modification of ß-Ag2Se has proven to be useful as a near-room-temperature thermoelectric material. Over the past years, research has been devoted to interstitial, vacancy, and substitutional doping into the parent ß-Ag2Se structure, aiming at tuning the material's charge and heat transport properties to enhance thermoelectric performance. The transformation of ß-Ag2Se into α-Ag2Se at ∼134 °C and the low solubility of dopants are the main obstacles for the doping approach. Herein, we report a facile, safe, scalable, and cost-effective benchtop approach to successfully produce metal-doped ß-Ag2Se. The doped materials display a remarkable enhancement of thermoelectric performance with a record-high peak zT of 1.30 at 120 °C and an average zT of ∼1.15 in the 25-120 °C range for 0.2 at. % Zn-doped Ag2Se. The enhancement in zT is attributed to point defects created by Zn doping into Ag vacancies/interstitials, which enhances the scattering of phonons and tunes the charge carrier properties, leading to the significant suppression of thermal conductivity. The simplicity of the synthetic method developed herein and the high performance of the final products provide an avenue to produce high-quality Ag2Se-based thermoelectric materials.

2.
J Am Chem Soc ; 145(8): 4638-4646, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787623

RESUMO

The zinc-antimony phase space has been heavily investigated due to the structural complexity and abundance of high-performing thermoelectric materials. Consequentially, the desire to use zinc and antimony as framework elements to encage rattling cations and achieve phonon-glass-electron-crystal-type properties has remained an enticing goal with only two alkali metal clathrates to date, Cs8Zn18Sb28 and K58Zn122Sb207. Guided by Zintl electron-counting predictions, we explored the Ba-Zn-Pn (Pn = As, Sb) phase space proximal to the expected composition of the type-I clathrate. In situ powder X-ray diffraction studies revealed two "hidden" compounds which can only be synthesized in a narrow temperature range. The ex situ synthesis and crystal growth unveiled that instead of type-I clathrates, compositionally close but structurally different new clathrate-like compounds formed, Ba2Zn5As6 and Ba2Zn5Sb6. These materials crystallize in a unique structure, in the orthorhombic space group Pmna with the Wyckoff sequence i2h6gfe. Single-phase synthesis enabled the exploration of their transport properties. Rattling of the Ba cations in oversized cages manifested low thermal conductivity, which, coupled with the high Seebeck coefficients observed, are prerequisites for a promising thermoelectric material. Potential for further optimization of the thermoelectric performance by aliovalent doping was computationally analyzed.

3.
Chem Commun (Camb) ; 58(55): 7622-7625, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35712888

RESUMO

A series of novel semiconductors AAe6Si12P20X (A = Na, K, Rb, Cs; Ae = Sr, Ba; X = Cl, Br, I) is reported. Their crystal structures feature a tetrahedral Si-P framework with large zeolite-like pores hosting two types of cations, monoatomic A+ and unprecedented octahedral X@Ae611+. Mixing of the A and Ba cations was detected by single crystal X-ray diffraction and confirmed by multinuclear solid state NMR. The reported compounds are highly stable semiconductors with a bandgap range from 1.4 to 2.0 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA