Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38785684

RESUMO

The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection.


Assuntos
Aptâmeros de Nucleotídeos , Bactérias , Técnicas Biossensoriais , Humanos , Técnicas Eletroquímicas , Biomarcadores
2.
Foods ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38890946

RESUMO

Agaricus bisporus, commonly known as the button mushroom, has attracted attention for its biological properties, including antimicrobial activities. Here, we evaluated the efficacy of ethanolic and acetonic extracts from white and brown A. bisporus against different bacterial strains, including antibiotic-resistant strains. Bioautography and principal component analysis identified the most active antibacterial compounds for each of the tested bacteria and indicated the main markers responsible for the strain-specific effects. In addition, the mushroom extracts demonstrated a synergistic impact when combined with the antistaphylococcal antibiotic AFN-1252.

3.
ACS Appl Mater Interfaces ; 16(23): 29645-29656, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809175

RESUMO

The cell-SELEX method enables efficient selection of aptamers that bind whole bacterial cells. However, after selection, it is difficult to determine their binding affinities using common screening methods because of the large size of the bacteria. Here we propose a simple surface plasmon resonance imaging method (SPRi) for aptamer characterization using bacterial membrane vesicles, called nanosomes, instead of whole cells. Nanosomes were obtained from membrane fragments after mechanical cell disruption in order to preserve the external surface epitopes of the bacterium used for their production. The study was conducted on Bacillus cereus (B. cereus), a Gram-positive bacterium commonly found in soil, rice, vegetables, and dairy products. Four aptamers and one negative control were initially grafted onto a biochip. The binding of B. cereus cells and nanosomes to immobilized aptamers was then compared. The use of nanosomes instead of cells provided a 30-fold amplification of the SPRi signal, thus allowing the selection of aptamers with higher affinities. Aptamer SP15 was found to be the most sensitive and selective for B. cereus ATCC14579 nanosomes. It was then truncated into three new sequences (SP15M, SP15S1, and SP15S2) to reduce its size while preserving the binding site. Fitting the results of the SPRi signal for B. cereus nanosomes showed a similar trend for SP15 and SP15M, and a slightly higher apparent association rate constant kon for SP15S2, which is the truncation with a high probability of a G-quadruplex structure. These observations were confirmed on nanosomes from B. cereus ATCC14579 grown in milk and from the clinical strain B. cereus J066. The developed method was validated using fluorescence microscopy on whole B. cereus cells and the SP15M aptamer labeled with a rhodamine. This study showed that nanosomes can successfully mimic the bacterial membrane with great potential for facilitating the screening of specific ligands for bacteria.


Assuntos
Aptâmeros de Nucleotídeos , Bacillus cereus , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Bacillus cereus/metabolismo , Bacillus cereus/química , Técnica de Seleção de Aptâmeros
4.
Talanta ; 259: 124557, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080072

RESUMO

Gold electrodes are one of most prevalent substrates in electrochemical biosensors because they can be easily and highly efficiently functionalized with thiolated biomolecules. However, conventional methods to fabricate gold electrodes are costly, time-consuming and require onerous equipment. Here, an affordable method for rapid fabrication of an electrochemical immunosensor for Escherichia coli detection is presented. The gold electrode was generated using 24-karat gold leaves and lowcost polyvinyl chloride adhesive sheets covered with an insulating PTFE layer. The goldleaf electrode (GLE) was patterned using laser ablation and characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electronic microscopy, contact angle and 3D profiling. The GLEs were modified by a self-assembled mercaptopropionic monolayer, followed by surface activation to allow binding of the specific anti-E. coli antibody via carbodiimide linking. The biosensor showed a detection limit of 2 CFU/mL and a linear dynamic range of 10-107 CFU/mL for E. coli cells. No false positive signals were obtained from control bacteria. The obtained results demonstrated suitability of GLE for use in biosensors with high reliability and reproducibility. It is foreseeable that our work will inspire design of point-of-need biosensors broadly applicable in low-resource settings.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Eletrodos , Ouro/química , Técnicas Eletroquímicas/métodos
5.
J Microbiol Methods ; 201: 106578, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36108985

RESUMO

Nonspecific binding of proteins from complex food matrices is a significant challenge associated with a biosensor using gold nanoparticles (AuNPs). To overcome this, we developed an efficient EDTA chelating treatment to denature milk proteins and prevent their adsorption on AuNPs. The use of EDTA to solubilize proteins enabled a sensitive label-free apta-sensor platform for colorimetric detection of Staphylococcus aureus in milk and infant formula. In the assay, S. aureus depleted aptamers from the test solution, and the reduction of aptamers enabled aggregation of AuNPs upon salt addition, a process characterized by a color change from red to purple. Under optimized conditions, S. aureus could be visually detected within 30 min with the detection limit of 7.5 × 104 CFU/mL and 8.4 × 104 CFU/mL in milk and infant formula, respectively. The EDTA treatment provides new opportunities for monitoring milk contamination and may prove valuable for biosensor point-of-need applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Aptâmeros de Nucleotídeos/química , Colorimetria , Ácido Edético , Ouro/química , Humanos , Lactente , Fórmulas Infantis , Limite de Detecção , Nanopartículas Metálicas/química , Proteínas do Leite , Pós , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA