Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cereb Cortex ; 29(4): 1752-1766, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715237

RESUMO

In Parkinson's disease, the degeneration of the midbrain dopaminergic neurons is consistently associated with modified metabolic activity in the cerebellum. Here we examined the functional reorganization taking place in the cerebello-cerebral circuit in a murine model of Parkinson's disease with 6-OHDA lesion of midbrain dopaminergic neurons. Cerebellar optogenetic stimulations evoked similar movements in control and lesioned mice, suggesting a normal coupling of cerebellum to the motor effectors after the lesion. In freely moving animals, the firing rate in the primary motor cortex was decreased after the lesion, while cerebellar nuclei neurons showed an increased firing rate. This increase may result from reduced inhibitory Purkinje cells inputs, since a population of slow and irregular Purkinje cells was observed in the cerebellar hemispheres of lesioned animals. Moreover, cerebellar stimulations generated smaller electrocortical responses in the motor cortex of lesioned animals suggesting a weaker cerebello-cerebral coupling. Overall these results indicate the presence of functional changes in the cerebello-cerebral circuit, but their ability to correct cortical dysfunction may be limited due to functional uncoupling between the cerebellum and cerebral cortex.


Assuntos
Cerebelo/fisiopatologia , Córtex Motor/fisiopatologia , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Potenciais de Ação , Animais , Eletrocorticografia , Camundongos , Atividade Motora/fisiologia , Optogenética , Oxidopamina
2.
EMBO J ; 34(19): 2408-23, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26323479

RESUMO

Extracellular α-synuclein (α-syn) assemblies can be up-taken by neurons; however, their interaction with the plasma membrane and proteins has not been studied specifically. Here we demonstrate that α-syn assemblies form clusters within the plasma membrane of neurons. Using a proteomic-based approach, we identify the α3-subunit of Na+/K+-ATPase (NKA) as a cell surface partner of α-syn assemblies. The interaction strength depended on the state of α-syn, fibrils being the strongest, oligomers weak, and monomers none. Mutations within the neuron-specific α3-subunit are linked to rapid-onset dystonia Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). We show that freely diffusing α3-NKA are trapped within α-syn clusters resulting in α3-NKA redistribution and formation of larger nanoclusters. This creates regions within the plasma membrane with reduced local densities of α3-NKA, thereby decreasing the efficiency of Na+ extrusion following stimulus. Thus, interactions of α3-NKA with extracellular α-syn assemblies reduce its pumping activity as its mutations in RDP/AHC.


Assuntos
Hemiplegia/metabolismo , Mutação , Neurônios/metabolismo , Transtornos Parkinsonianos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , alfa-Sinucleína/metabolismo , Hemiplegia/genética , Hemiplegia/patologia , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurônios/patologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , ATPase Trocadora de Sódio-Potássio/genética , alfa-Sinucleína/genética
3.
J Physiol ; 594(10): 2729-49, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26918702

RESUMO

KEY POINTS: We performed extracellular recording of pairs of interneuron-Purkinje cells in vivo. A single interneuron produces a substantial, short-lasting, inhibition of Purkinje cells. Feed-forward inhibition is associated with characteristic asymmetric cross-correlograms. In vivo, Purkinje cell spikes only depend on the most recent synaptic activity. ABSTRACT: Cerebellar molecular layer interneurons are considered to control the firing rate and spike timing of Purkinje cells. However, interactions between these cell types are largely unexplored in vivo. Using tetrodes, we performed simultaneous extracellular recordings of neighbouring Purkinje cells and molecular layer interneurons, presumably basket cells, in adult rats in vivo. The high levels of afferent synaptic activity encountered in vivo yield irregular spiking and reveal discharge patterns characteristic of feed-forward inhibition, thus suggesting an overlap of the afferent excitatory inputs between Purkinje cells and basket cells. Under conditions of intense background synaptic inputs, interneuron spikes exert a short-lasting inhibitory effect, delaying the following Purkinje cell spike by an amount remarkably independent of the Purkinje cell firing cycle. This effect can be explained by the short memory time of the Purkinje cell potential as a result of the intense incoming synaptic activity. Finally, we found little evidence for any involvement of the interneurons that we recorded with the cerebellar high-frequency oscillations promoting Purkinje cell synchrony. The rapid interactions between interneurons and Purkinje cells might be of particular importance in fine motor control because the inhibitory action of interneurons on Purkinje cells leads to deep cerebellar nuclear disinhibition and hence increased cerebellar output.


Assuntos
Córtex Cerebelar/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Células de Purkinje/fisiologia , Potenciais de Ação/fisiologia , Animais , Córtex Cerebelar/citologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 110(50): 20302-7, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277825

RESUMO

CaV3.1 T-type channels are abundant at the cerebellar synapse between parallel fibers and Purkinje cells where they contribute to synaptic depolarization. So far, no specific physiological function has been attributed to these channels neither as charge carriers nor more specifically as Ca(2+) carriers. Here we analyze their incidence on synaptic plasticity, motor behavior, and cerebellar motor learning, comparing WT animals and mice where T-type channel function has been abolished either by gene deletion or by acute pharmacological blockade. At the cellular level, we show that CaV3.1 channels are required for long-term potentiation at parallel fiber-Purkinje cell synapses. Moreover, basal simple spike discharge of the Purkinje cell in KO mice is modified. Acute or chronic T-type current blockade results in impaired motor performance in particular when a good body balance is required. Because motor behavior integrates reflexes and past memories of learned behavior, this suggests impaired learning. Indeed, subjecting the KO mice to a vestibulo-ocular reflex phase reversal test reveals impaired cerebellum-dependent motor learning. These data identify a role of low-voltage activated calcium channels in synaptic plasticity and establish a role for CaV3.1 channels in cerebellar learning.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Cerebelo/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Células de Purkinje/metabolismo , Sinapses/metabolismo , Animais , Benzamidas , Canais de Cálcio Tipo T/genética , Movimentos Oculares/fisiologia , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Piperidinas , Teste de Desempenho do Rota-Rod/efeitos adversos
5.
Proc Natl Acad Sci U S A ; 110(40): 16223-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24046366

RESUMO

Climbing fibers, the projections from the inferior olive to the cerebellar cortex, carry sensorimotor error and clock signals that trigger motor learning by controlling cerebellar Purkinje cell synaptic plasticity and discharge. Purkinje cells target the deep cerebellar nuclei, which are the output of the cerebellum and include an inhibitory GABAergic projection to the inferior olive. This pathway identifies a potential closed loop in the olivo-cortico-nuclear network. Therefore, sets of Purkinje cells may phasically control their own climbing fiber afferents. Here, using in vitro and in vivo recordings, we describe a genetically modified mouse model that allows the specific optogenetic control of Purkinje cell discharge. Tetrode recordings in the cerebellar nuclei demonstrate that focal stimulations of Purkinje cells strongly inhibit spatially restricted sets of cerebellar nuclear neurons. Strikingly, such stimulations trigger delayed climbing-fiber input signals in the stimulated Purkinje cells. Therefore, our results demonstrate that Purkinje cells phasically control the discharge of their own olivary afferents and thus might participate in the regulation of cerebellar motor learning.


Assuntos
Cerebelo/citologia , Vias Eferentes/citologia , Núcleo Olivar/citologia , Células de Purkinje/fisiologia , Animais , Channelrhodopsins , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Optogenética , Teste de Desempenho do Rota-Rod
6.
J Neurosci ; 33(15): 6552-6, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575852

RESUMO

The cerebellum is an essential structure for the control of movement. It sends abundant ascending projections to the cerebral cortex via the thalamus, but its contribution to cortical activity remains largely unknown. Here we studied its influence on cortical neuronal activity in freely moving rats. We demonstrate an excitatory action of the cerebellum on the motor thalamus and the motor cortex. We also show that cerebellar inactivation disrupts the gamma-band coherence of local field potential between the sensory and motor cortices during whisking. In contrast, phase locking of neuronal activities to local gamma oscillations was preserved in the sensory and motor cortices by cerebellar inactivation. These results indicate that the cerebellum contributes to coordinated sensorimotor cortical activities during motor activation and thus participates in the multiregional cortical processing of information.


Assuntos
Ondas Encefálicas/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Locomoção/fisiologia , Córtex Motor/fisiologia , Animais , Mapeamento Encefálico/métodos , Cerebelo/efeitos dos fármacos , Agonistas de Receptores de GABA-A/administração & dosagem , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Microinjeções , Muscimol/administração & dosagem , Muscimol/farmacologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Tálamo/fisiologia , Vibrissas/fisiologia
7.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695719

RESUMO

Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.


Assuntos
Microglia , Receptores de GABA-A , Sono de Ondas Lentas , Sinapses , Fator de Necrose Tumoral alfa , Animais , Masculino , Camundongos , Consolidação da Memória , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Transdução de Sinais , Sono/fisiologia , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Proc Natl Acad Sci U S A ; 107(14): 6516-9, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20332204

RESUMO

Brain activity in sleep plays a crucial role in memory consolidation, an offline process that determines the long-term strength of memory traces. Consolidation efficacy differs across individuals, but the brain activity dynamics underlying these differences remain unknown. Here, we studied how interindividual variability in fear memory consolidation relates to neural activity in brain structures that participate in Pavlovian fear learning. From the end of training to testing 24 h later, some rats showed increased and others decreased conditioned fear responses. We found that overnight bidirectional changes in fear memory were selectively correlated with modifications in theta coherence between the amygdala, medial prefrontal cortex, and hippocampus during paradoxical sleep. Thus, our results suggest that theta coordination in the limbic system may influence interindividual differences in memory consolidation of aversive experiences.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo , Memória , Sono REM , Animais , Aprendizagem , Masculino , Ratos , Ratos Sprague-Dawley
9.
Front Syst Neurosci ; 17: 1176668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229350

RESUMO

Fear learning is mediated by a large network of brain structures and the understanding of their roles and interactions is constantly progressing. There is a multitude of anatomical and behavioral evidence on the interconnection of the cerebellar nuclei to other structures in the fear network. Regarding the cerebellar nuclei, we focus on the coupling of the cerebellar fastigial nucleus to the fear network and the relation of the cerebellar dentate nucleus to the ventral tegmental area. Many of the fear network structures that receive direct projections from the cerebellar nuclei are playing a role in fear expression or in fear learning and fear extinction learning. We propose that the cerebellum, via its projections to the limbic system, acts as a modulator of fear learning and extinction learning, using prediction-error signaling and regulation of fear related thalamo-cortical oscillations.

10.
Nat Commun ; 14(1): 1508, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932068

RESUMO

Fear extinction is a form of inhibitory learning that suppresses the expression of aversive memories and plays a key role in the recovery of anxiety and trauma-related disorders. Here, using male mice, we identify a cerebello-thalamo-cortical pathway regulating fear extinction. The cerebellar fastigial nucleus (FN) projects to the lateral subregion of the mediodorsal thalamic nucleus (MD), which is reciprocally connected with the dorsomedial prefrontal cortex (dmPFC). The inhibition of FN inputs to MD in male mice impairs fear extinction in animals with high fear responses and increases the bursting of MD neurons, a firing pattern known to prevent extinction learning. Indeed, this MD bursting is followed by high levels of the dmPFC 4 Hz oscillations causally associated with fear responses during fear extinction, and the inhibition of FN-MD neurons increases the coherence of MD bursts and oscillations with dmPFC 4 Hz oscillations. Overall, these findings reveal a regulation of fear-related thalamo-cortical dynamics by the cerebellum and its contribution to fear extinction.


Assuntos
Extinção Psicológica , Medo , Camundongos , Masculino , Animais , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Núcleo Mediodorsal do Tálamo/fisiologia , Cerebelo
11.
Nat Commun ; 13(1): 3211, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680891

RESUMO

Chronic Levodopa therapy, the gold-standard treatment for Parkinson's Disease (PD), leads to the emergence of involuntary movements, called levodopa-induced dyskinesia (LID). Cerebellar stimulation has been shown to decrease LID severity in PD patients. Here, in order to determine how cerebellar stimulation induces LID alleviation, we performed daily short trains of optogenetic stimulations of Purkinje cells (PC) in freely moving LID mice. We demonstrated that these stimulations are sufficient to suppress LID or even prevent their development. This symptomatic relief is accompanied by the normalization of aberrant neuronal discharge in the cerebellar nuclei, the motor cortex and the parafascicular thalamus. Inhibition of the cerebello-parafascicular pathway counteracted the beneficial effects of cerebellar stimulation. Moreover, cerebellar stimulation reversed plasticity in D1 striatal neurons and normalized the overexpression of FosB, a transcription factor causally linked to LID. These findings demonstrate LID alleviation and prevention by daily PC stimulations, which restore the function of a wide motor network, and may be valuable for LID treatment.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Antiparkinsonianos/efeitos adversos , Cerebelo/metabolismo , Discinesia Induzida por Medicamentos/complicações , Discinesia Induzida por Medicamentos/metabolismo , Discinesia Induzida por Medicamentos/prevenção & controle , Humanos , Levodopa/efeitos adversos , Camundongos , Doença de Parkinson/tratamento farmacológico
12.
Elife ; 112022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699413

RESUMO

Dystonia is often associated with functional alterations in the cerebello-thalamic pathways, which have been proposed to contribute to the disorder by propagating pathological firing patterns to the forebrain. Here, we examined the function of the cerebello-thalamic pathways in a model of DYT25 dystonia. DYT25 (Gnal+/-) mice carry a heterozygous knockout mutation of the Gnal gene, which notably disrupts striatal function, and systemic or striatal administration of oxotremorine to these mice triggers dystonic symptoms. Our results reveal an increased cerebello-thalamic excitability in the presymptomatic state. Following the first dystonic episode, Gnal+/- mice in the asymptomatic state exhibit a further increase of the cerebello-thalamo-cortical excitability, which is maintained after θ-burst stimulations of the cerebellum. When administered in the symptomatic state induced by a cholinergic activation, these stimulations decreased the cerebello-thalamic excitability and reduced dystonic symptoms. In agreement with dystonia being a multiregional circuit disorder, our results suggest that the increased cerebello-thalamic excitability constitutes an early endophenotype, and that the cerebellum is a gateway for corrective therapies via the depression of cerebello-thalamic pathways.


Assuntos
Distonia , Distúrbios Distônicos , Animais , Cerebelo , Modelos Animais de Doenças , Distonia/genética , Distúrbios Distônicos/genética , Camundongos , Vias Neurais , Tálamo
13.
J Neurosci ; 30(33): 10991-1003, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20720106

RESUMO

The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.


Assuntos
Angiopatia Amiloide Cerebral/fisiopatologia , Hipocampo/fisiopatologia , Memória/fisiologia , Septo do Cérebro/fisiopatologia , Ritmo Teta , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação , Peptídeos beta-Amiloides/metabolismo , Animais , Angiopatia Amiloide Cerebral/patologia , Hipocampo/patologia , Masculino , Neurônios/patologia , Neurônios/fisiologia , Periodicidade , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia
14.
Neuron ; 109(14): 2207-2209, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293289

RESUMO

How the cerebellum affects movement onset is poorly understood. In this issue of Neuron, Dacre et al. (2021) establish that in the context of operant conditioning, the transient activation of the cerebello-thalamo-cortical pathway to the motor cortex is sufficient to initiate the conditioned movement.


Assuntos
Cerebelo , Córtex Motor , Movimento , Neurônios
15.
Front Syst Neurosci ; 14: 475948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240052

RESUMO

Oscillations in the granule cell layer (GCL) of the cerebellar cortex have been related to behavior and could facilitate communication with the cerebral cortex. These local field potential (LFP) oscillations, strong at 4-12 Hz in the rodent cerebellar cortex during awake immobility, should also be an indicator of an underlying influence on the patterns of the cerebellar cortex neuronal firing during rest. To address this hypothesis, cerebellar cortex LFPs and simultaneous single-neuron activity were collected during LFP oscillatory periods in the GCL of awake resting rats. During these oscillatory episodes, different types of units across the GCL and Purkinje cell layers showed variable phase-relation with the oscillatory cycles. Overall, 74% of the Golgi cell firing and 54% of the Purkinje cell simple spike (SS) firing were phase-locked with the oscillations, displaying a clear phase relationship. Despite this tendency, fewer Golgi cells (50%) and Purkinje cell's SSs (25%) showed an oscillatory firing pattern. Oscillatory phase-locked spikes for the Golgi and Purkinje cells occurred towards the peak of the LFP cycle. GCL LFP oscillations had a strong capacity to predict the timing of Golgi cell spiking activity, indicating a strong influence of this oscillatory phenomenon over the GCL. Phase-locking was not as prominent for the Purkinje cell SS firing, indicating a weaker influence over the Purkinje cell layer, yet a similar phase relation. Overall, synaptic activity underlying GCL LFP oscillations likely exert an influence on neuronal population firing patterns in the cerebellar cortex in the awake resting state and could have a preparatory neural network shaping capacity serving as a neural baseline for upcoming cerebellar operations.

16.
Nat Commun ; 11(1): 5207, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060630

RESUMO

Fear conditioning is a form of associative learning that is known to involve different brain areas, notably the amygdala, the prefrontal cortex and the periaqueductal grey (PAG). Here, we describe the functional role of pathways that link the cerebellum with the fear network. We found that the cerebellar fastigial nucleus (FN) sends glutamatergic projections to vlPAG that synapse onto glutamatergic and GABAergic vlPAG neurons. Chemogenetic and optogenetic manipulations revealed that the FN-vlPAG pathway controls bi-directionally the strength of the fear memories, indicating an important role in the association of the conditioned and unconditioned stimuli, a function consistent with vlPAG encoding of fear prediction error. Moreover, FN-vlPAG projections also modulate extinction learning. We also found a FN-parafascicular thalamus pathway, which may relay cerebellar influence to the amygdala and modulates anxiety behaviors. Overall, our results reveal multiple contributions of the cerebellum to the emotional system.


Assuntos
Sistema Nervoso Central/fisiologia , Medo/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Sistema Nervoso Central/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Operante/fisiologia , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética
17.
J Neurosci ; 28(14): 3546-54, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18385313

RESUMO

Dysfunction of the serotonin system is implicated in sleep and emotional disorders. To test whether these impairments could arise during development, we studied the impact of early-life, transient versus genetic, permanent alterations of serotonin reuptake on sleep-wakefulness patterns, depression-related behavior, and associated physiological features. Here, we show that female mice treated neonatally with a highly selective serotonin reuptake inhibitor, escitalopram, exhibited signs of depression in the form of sleep anomalies, anhedonia, increased helplessness reversed by chronic antidepressant treatment, enhanced response to acute stress, and increased serotoninergic autoinhibitory feedback. This syndrome was not reproduced by treatment in naive adults but resembled the phenotype of mutant mice lacking the serotonin transporter, except that these exhibited decreased serotonin autoreceptor sensitivity and additional anxiety-like behavior. Thus, alteration of serotonin reuptake during development, whether induced by external or genetic factors, causes a depressive syndrome lasting into adulthood. Such early-life impairments might predispose individuals to sleep and/or mood disorders.


Assuntos
Comportamento Animal/fisiologia , Transtorno Depressivo/complicações , Transtorno Depressivo/metabolismo , Serotonina/metabolismo , Transtornos do Sono-Vigília/etiologia , Estresse Fisiológico/etiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina , Análise de Variância , Animais , Animais Recém-Nascidos , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Citalopram , Corticosterona/sangue , Transtorno Depressivo/induzido quimicamente , Transtorno Depressivo/genética , Modelos Animais de Doenças , Fluoxetina/uso terapêutico , Preferências Alimentares/efeitos dos fármacos , Hipotermia/induzido quimicamente , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Análise Espectral , Estresse Fisiológico/tratamento farmacológico , Vigília/efeitos dos fármacos
18.
Elife ; 62017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608779

RESUMO

Head movements are primarily sensed in a reference frame tied to the head, yet they are used to calculate self-orientation relative to the world. This requires to re-encode head kinematic signals into a reference frame anchored to earth-centered landmarks such as gravity, through computations whose neuronal substrate remains to be determined. Here, we studied the encoding of self-generated head movements in the rat caudal cerebellar vermis, an area essential for graviceptive functions. We found that, contrarily to peripheral vestibular inputs, most Purkinje cells exhibited a mixed sensitivity to head rotational and gravitational information and were differentially modulated by active and passive movements. In a subpopulation of cells, this mixed sensitivity underlay a tuning to rotations about an axis defined relative to gravity. Therefore, we show that the caudal vermis hosts a re-encoded, gravitationally polarized representation of self-generated head kinematics in freely moving rats.


Assuntos
Vermis Cerebelar/fisiologia , Sensação Gravitacional , Movimentos da Cabeça , Orientação Espacial , Animais , Ratos
19.
J Neurosci ; 25(49): 11231-8, 2005 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-16339018

RESUMO

Serotonin (5-hydroxytryptamine; 5-HT) plays key roles in sleep-wakefulness regulation. Evidence indicates that 5-HT2 receptors are involved mainly in non-rapid eye movement sleep (NREMS) regulation and respiratory control. Here, we investigated the relative contribution of 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptor subtypes to NREMS and breathing during sleep, using 5-HT2 subtype-selective ligands in wild-type (5-HT(2A)+/+) and knock-out (5-HT(2A)-/-) mice that do not express 5-HT(2A) receptors. Acute blockade of 5-HT(2A) receptors induced an increase in NREMS in 5-HT(2A)+/+ mice, but not 5-HT(2A)-/- mutants, which spontaneously expressed less NREMS than wild-type animals. In 5-HT(2A)+/+ mice, 5-HT(2B) receptor blockade produced a reduction of NREMS, whereas receptor activation induced an increase in this sleep stage. These effects were less pronounced in 5-HT(2A)-/- mice, indicating a lower sensitivity of 5-HT(2B) receptors in mutants, with no change in 5-HT(2B) mRNA. Blockade of 5-HT(2C) receptors had no effect on NREMS in both strains. In addition, an increase in EEG power density after sleep deprivation was observed in 5-HT(2A)+/+ mice but not in 5-HT(2A)-/- mice. Whole-body plethysmographic recordings indicated that 5-HT(2A) receptor blockade in 5-HT(2A)+/+ mice reduced NREMS apneas and bradypneas that occurred after sighs. In contrast, in 5-HT(2A)-/- mutants, NREMS apneas were not modified, and bradypnea after sighs were more pronounced. Our results demonstrate that 5-HT exerts a 5-HT(2B)-mediated facilitation of NREMS, and an influence respectively inhibitory on NREMS and facilitatory on sleep apnea generation, via 5-HT(2A) receptors. Moreover, 5-HT(2A) gene knock-out leads to functional compensations yielding adaptive changes opposite to those caused by pharmacological blockade of 5-HT(2A) receptors in 5-HT(2A)+/+ mice.


Assuntos
Adaptação Fisiológica/fisiologia , Ventilação Pulmonar/fisiologia , Receptores 5-HT2 de Serotonina/genética , Sono/fisiologia , Vigília/fisiologia , Adaptação Fisiológica/genética , Animais , Masculino , Camundongos , Camundongos Knockout , Ventilação Pulmonar/genética , Receptor 5-HT2A de Serotonina/deficiência , Receptor 5-HT2A de Serotonina/fisiologia , Receptores 5-HT2 de Serotonina/deficiência , Agonistas do Receptor 5-HT2 de Serotonina , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Sono/efeitos dos fármacos , Sono/genética , Privação do Sono/genética , Privação do Sono/metabolismo , Vigília/efeitos dos fármacos , Vigília/genética
20.
Cell Rep ; 15(1): 104-116, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27052175

RESUMO

Numerous studies have shown that cerebellar function is related to the plasticity at the synapses between parallel fibers and Purkinje cells. How specific input patterns determine plasticity outcomes, as well as the biophysics underlying plasticity of these synapses, remain unclear. Here, we characterize the patterns of activity that lead to postsynaptically expressed LTP using both in vivo and in vitro experiments. Similar to the requirements of LTD, we find that high-frequency bursts are necessary to trigger LTP and that this burst-dependent plasticity depends on presynaptic NMDA receptors and nitric oxide (NO) signaling. We provide direct evidence for calcium entry through presynaptic NMDA receptors in a subpopulation of parallel fiber varicosities. Finally, we develop and experimentally verify a mechanistic plasticity model based on NO and calcium signaling. The model reproduces plasticity outcomes from data and predicts the effect of arbitrary patterns of synaptic inputs on Purkinje cells, thereby providing a unified description of plasticity.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Potenciação de Longa Duração , Terminações Pré-Sinápticas/metabolismo , Células de Purkinje/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais de Ação , Animais , Sinalização do Cálcio , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Óxido Nítrico/metabolismo , Terminações Pré-Sinápticas/fisiologia , Células de Purkinje/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA