Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 191(7): 804-19, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25664391

RESUMO

RATIONALE: The hallmark of severe influenza virus infection is excessive inflammation of the lungs. Platelets are activated during influenza, but their role in influenza virus pathogenesis and inflammatory responses is unknown. OBJECTIVES: To determine the role of platelets during influenza A virus infections and propose new therapeutics against influenza. METHODS: We used targeted gene deletion approaches and pharmacologic interventions to investigate the role of platelets during influenza virus infection in mice. MEASUREMENTS AND MAIN RESULTS: Lungs of infected mice were massively infiltrated by aggregates of activated platelets. Platelet activation promoted influenza A virus pathogenesis. Activating protease-activated receptor 4, a platelet receptor for thrombin that is crucial for platelet activation, exacerbated influenza-induced acute lung injury and death. In contrast, deficiency in the major platelet receptor glycoprotein IIIa protected mice from death caused by influenza viruses, and treating the mice with a specific glycoprotein IIb/IIIa antagonist, eptifibatide, had the same effect. Interestingly, mice treated with other antiplatelet compounds (antagonists of protease-activated receptor 4, MRS 2179, and clopidogrel) were also protected from severe lung injury and lethal infections induced by several influenza strains. CONCLUSIONS: The intricate relationship between hemostasis and inflammation has major consequences in influenza virus pathogenesis, and antiplatelet drugs might be explored to develop new antiinflammatory treatment against influenza virus infections.


Assuntos
Influenza Humana/fisiopatologia , Orthomyxoviridae/patogenicidade , Ativação Plaquetária/fisiologia , Agregação Plaquetária/fisiologia , Pneumonia/fisiopatologia , Animais , Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Influenza Humana/complicações , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae/efeitos dos fármacos , Pneumonia/complicações , Pneumonia/tratamento farmacológico
2.
J Virol ; 88(19): 11215-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031344

RESUMO

UNLABELLED: During the budding process, influenza A viruses (IAVs) incorporate multiple host cell membrane proteins. However, for most of them, their significance in viral morphogenesis and infectivity remains unknown. We demonstrate here that the expression of annexin V (A5) is upregulated at the cell surface upon IAV infection and that a substantial proportion of the protein is present in lipid rafts, the site of virus budding. Western blotting and immunogold analysis of highly purified IAV particles showed the presence of A5 in the virion. Significantly, gamma interferon (IFN-γ)-induced Stat phosphorylation and IFN-γ-induced 10-kDa protein (IP-10) production in macrophage-derived THP-1 cells was inhibited by purified IAV particles. Disruption of the IFN-γ signaling pathway was A5 dependent since downregulation of its expression or its blockage reversed the inhibition and resulted in decreased viral replication in vitro. The functional significance of these results was also observed in vivo. Thus, IAVs can subvert the IFN-γ antiviral immune response by incorporating A5 into their envelope during the budding process. IMPORTANCE: Many enveloped viruses, including influenza A viruses, bud from the plasma membrane of their host cells and incorporate cellular surface proteins into viral particles. However, for the vast majority of these proteins, only the observation of their incorporation has been reported. We demonstrate here that the host protein annexin V is specifically incorporated into influenza virus particles during the budding process. Importantly, we showed that packaged annexin V counteracted the antiviral activity of gamma interferon in vitro and in vivo. Thus, these results showed that annexin V incorporated in the viral envelope of influenza viruses allow viral escape from immune surveillance. Understanding the role of host incorporated protein into virions may reveal how enveloped RNA viruses hijack the host cell machinery for their own purposes.


Assuntos
Anexina A5/genética , Vírus da Influenza A/genética , Transdução de Sinais/genética , Vírion/genética , Replicação Viral , Animais , Anexina A5/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Cães , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/metabolismo , Interferon gama/antagonistas & inibidores , Interferon gama/metabolismo , Interferon gama/farmacologia , Células Madin Darby de Rim Canino , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Camundongos , Monócitos/metabolismo , Monócitos/virologia , Transporte Proteico , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Carga Viral , Vírion/química , Vírion/metabolismo , Liberação de Vírus
3.
Cell Mol Life Sci ; 71(5): 885-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24091817

RESUMO

Influenza viruses cause acute respiratory infections, which are highly contagious and occur as seasonal epidemic and sporadic pandemic outbreaks. Innate immune response is activated shortly after infection with influenza A viruses (IAV), affording effective protection of the host. However, this response should be tightly regulated, as insufficient inflammation may result in virus escape from immunosurveillance. In contrast, excessive inflammation may result in bystander lung tissue damage, loss of respiratory capacity, and deterioration of the clinical outcome of IAV infections. In this review, we give a comprehensive overview of the innate immune response to IAV infection and summarize the most important findings on how the host can inappropriately respond to influenza.


Assuntos
Hemostasia/imunologia , Imunidade Inata/imunologia , Vigilância Imunológica/imunologia , Inflamação/imunologia , Influenza Humana/imunologia , Modelos Imunológicos , Antígenos HLA-G/metabolismo , Humanos , Inflamação/etiologia , Receptor PAR-1/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo
4.
Br J Pharmacol ; 175(2): 388-403, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29105740

RESUMO

BACKGROUND AND PURPOSE: Protease-activated receptor 1 (PAR1) has been demonstrated to be involved in the pathogenesis of viral diseases. However, its role remains controversial. The goal of our study was to investigate the contribution of PAR1 to respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. EXPERIMENTAL APPROACH: Pharmacological approaches were used to investigate the role of PAR1 during RSV and hMPV infection, in vitro using epithelial A549 cells and in vivo using a mouse model of virus infection. KEY RESULTS: In vitro, the PAR1 antagonist RWJ-56110 reduced the replication of RSV and hMPV in A549 cells. In agreement with these results, RWJ-56110-treated mice were protected against RSV and hMPV infections, as indicated by less weight loss and mortality. This protective effect in mice correlated with decreased lung viral replication and inflammation. In contrast, hMPV-infected mice treated with the PAR1 agonist TFLLR-NH2 showed increased mortality, as compared to infected mice, which were left untreated. Thrombin generation was shown to occur downstream of PAR1 activation in infected mice via tissue factor exposure as part of the inflammatory response, and thrombin inhibition by argatroban reduced the pathogenicity of the infection with no additive effect to that induced by PAR1 inhibition. CONCLUSION AND IMPLICATIONS: These data show that PAR1 plays a detrimental role during RSV and hMPV infections in mice via, at least, a thrombin-dependent mechanism. Thus, the use of PAR1 antagonists and thrombin inhibitors may have potential as a novel approach for the treatment of RSV and hMPV infections.


Assuntos
Indazóis/farmacologia , Infecções por Paramyxoviridae/virologia , Receptor PAR-1/antagonistas & inibidores , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Trombina/farmacologia , Ureia/análogos & derivados , Replicação Viral/efeitos dos fármacos , Animais , Arginina/análogos & derivados , Células Cultivadas , Feminino , Humanos , Metapneumovirus/efeitos dos fármacos , Camundongos , Oligopeptídeos/farmacologia , Infecções por Paramyxoviridae/mortalidade , Ácidos Pipecólicos/farmacologia , Receptor PAR-1/agonistas , Sulfonamidas , Ureia/farmacologia , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA