Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neurobiol Dis ; 181: 106113, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023829

RESUMO

BACKGROUND: Multiple sclerosis (MS), a chronic auto-immune, inflammatory, and degenerative disease of the central nervous system, affects both males and females; however, females suffer from a higher risk of developing MS (2-3:1 ratio relative to males). The precise sex-based factors influencing risk of MS are currently unknown. Here, we explore the role of sex in MS to identify molecular mechanisms underlying observed MS sex differences that may guide novel therapeutic approaches tailored for males or females. METHODS: We performed a rigorous and systematic review of genome-wide transcriptome studies of MS that included patient sex data in the Gene Expression Omnibus and ArrayExpress databases following PRISMA statement guidelines. For each selected study, we analyzed differential gene expression to explore the impact of the disease in females (IDF), in males (IDM) and our main goal: the sex differential impact of the disease (SDID). Then, for each scenario (IDF, IDM and SDID) we performed 2 meta-analyses in the main tissues involved in the disease (brain and blood). Finally, we performed a gene set analysis in brain tissue, in which a higher number of genes were dysregulated, to characterize sex differences in biological pathways. RESULTS: After screening 122 publications, the systematic review provided a selection of 9 studies (5 in blood and 4 in brain tissue) with a total of 474 samples (189 females with MS and 109 control females; 82 males with MS and 94 control males). Blood and brain tissue meta-analyses identified, respectively, 1 (KIR2DL3) and 13 (ARL17B, CECR7, CEP78, IFFO2, LOC401127, NUDT18, RNF10, SLC17A5, STMP1, TRAF3IP2-AS1, UBXN2B, ZNF117, ZNF488) MS-associated genes that differed between males and females (SDID comparison). Functional analyses in the brain revealed different altered immune patterns in females and males (IDF and IDM comparisons). The pro-inflammatory environment and innate immune responses related to myeloid lineage appear to be more affected in females, while adaptive responses associated with the lymphocyte lineage in males. Additionally, females with MS displayed alterations in mitochondrial respiratory chain complexes, purine, and glutamate metabolism, while MS males displayed alterations in stress response to metal ion, amine, and amino acid transport. CONCLUSION: We found transcriptomic and functional differences between MS males and MS females (especially in the immune system), which may support the development of new sex-based research of this disease. Our study highlights the importance of understanding the role of biological sex in MS to guide a more personalized medicine.


Assuntos
Esclerose Múltipla , Transcriptoma , Humanos , Masculino , Feminino , Esclerose Múltipla/genética , Caracteres Sexuais , Perfilação da Expressão Gênica , Sistema Nervoso Central , Proteínas de Transporte , Proteínas de Ciclo Celular
2.
NMR Biomed ; 36(11): e5004, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37482922

RESUMO

Global agreement in central nervous system (CNS) tumor classification is essential for predicting patient prognosis and determining the correct course of treatment, as well as for stratifying patients for clinical trials at international level. The last update by the World Health Organization of CNS tumor classification and grading in 2021 considered, for the first time, IDH-wildtype glioblastoma and astrocytoma IDH-mutant grade 4 as different tumors. Mutations in the genes isocitrate dehydrogenase (IDH) 1 and 2 occur early and, importantly, contribute to gliomagenesis. IDH mutation produces a metabolic reprogramming of tumor cells, thus affecting the processes of hypoxia and vascularity, resulting in a clear advantage for those patients who present with IDH-mutated astrocytomas. Despite the clinical relevance of IDH mutation, current protocols do not include full sequencing for every patient. Alternative biomarkers could be useful and complementary to obtain a more reliable classification. In this sense, magnetic resonance imaging (MRI)-perfusion biomarkers, such as relative cerebral blood volume and flow, could be useful from the moment of presurgery, without incurring additional financial costs or requiring extra effort. The main purpose of this work is to analyze the vascular and hemodynamic differences between IDH-wildtype glioblastoma and IDH-mutant astrocytoma. To achieve this, we evaluate and validate the association between dynamic susceptibility contrast-MRI perfusion biomarkers and IDH mutation status. In addition, to gain a deeper understanding of the vascular differences in astrocytomas depending on the IDH mutation, we analyze the transcriptomic bases of the vascular differences.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Transcriptoma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Astrocitoma/metabolismo , Mutação/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Biomarcadores
3.
Mol Biol Evol ; 32(10): 2681-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26116858

RESUMO

Molecular chaperones fold many proteins and their mutated versions in a cell and can sometimes buffer the phenotypic effect of mutations that affect protein folding. Unanswered questions about this buffering include the nature of its mechanism, its influence on the genetic variation of a population, the fitness trade-offs constraining this mechanism, and its role in expediting evolution. Answering these questions is fundamental to understand the contribution of buffering to increase genetic variation and ecological diversification. Here, we performed experimental evolution, genome resequencing, and computational analyses to determine the trade-offs and evolutionary trajectories of Escherichia coli expressing high levels of the essential chaperonin GroEL. GroEL is abundantly present in bacteria, particularly in bacteria with large loads of deleterious mutations, suggesting its role in mutational buffering. We show that groEL overexpression is costly to large populations evolving in the laboratory, leading to groE expression decline within 66 generations. In contrast, populations evolving under the strong genetic drift characteristic of endosymbiotic bacteria avoid extinction or can be rescued in the presence of abundant GroEL. Genomes resequenced from cells evolved under strong genetic drift exhibited significantly higher tolerance to deleterious mutations at high GroEL levels than at native levels, revealing that GroEL is buffering mutations in these cells. GroEL buffered mutations in a highly diverse set of proteins that interact with the environment, including substrate and ion membrane transporters, hinting at its role in ecological diversification. Our results reveal the fitness trade-offs of mutational buffering and how genetic variation is maintained in populations.


Assuntos
Chaperonina 60/genética , Escherichia coli/genética , Aptidão Genética , Mutação/genética , Linhagem Celular , Chaperonina 60/metabolismo , Evolução Molecular Direcionada , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Deriva Genética , Óperon/genética , Frações Subcelulares/metabolismo
5.
Biol Sex Differ ; 13(1): 68, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414996

RESUMO

BACKGROUND: In recent decades, increasing longevity (among other factors) has fostered a rise in Parkinson's disease incidence. Although not exhaustively studied in this devastating disease, the impact of sex represents a critical variable in Parkinson's disease as epidemiological and clinical features differ between males and females. METHODS: To study sex bias in Parkinson's disease, we conducted a systematic review to select sex-labeled transcriptomic data from three relevant brain tissues: the frontal cortex, the striatum, and the substantia nigra. We performed differential expression analysis on each study chosen. Then we summarized the individual differential expression results with three tissue-specific meta-analyses and a global all-tissues meta-analysis. Finally, results from the meta-analysis were functionally characterized using different functional profiling approaches. RESULTS: The tissue-specific meta-analyses linked Parkinson's disease to the enhanced expression of MED31 in the female frontal cortex and the dysregulation of 237 genes in the substantia nigra. The global meta-analysis detected 15 genes with sex-differential patterns in Parkinson's disease, which participate in mitochondrial function, oxidative stress, neuronal degeneration, and cell death. Furthermore, functional analyses identified pathways, protein-protein interaction networks, and transcription factors that differed by sex. While male patients exhibited changes in oxidative stress based on metal ions, inflammation, and angiogenesis, female patients exhibited dysfunctions in mitochondrial and lysosomal activity, antigen processing and presentation functions, and glutamic and purine metabolism. All results generated during this study are readily available by accessing an open web resource ( http://bioinfo.cipf.es/metafun-pd/ ) for consultation and reuse in further studies. CONCLUSIONS: Our in silico approach has highlighted sex-based differential mechanisms in typical Parkinson Disease hallmarks (inflammation, mitochondrial dysfunction, and oxidative stress). Additionally, we have identified specific genes and transcription factors for male and female Parkinson Disease patients that represent potential candidates as biomarkers to diagnosis.


Assuntos
Doença de Parkinson , Humanos , Masculino , Feminino , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transcriptoma , Substância Negra/metabolismo , Inflamação/metabolismo , Fatores de Transcrição/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo
6.
J Biomed Semantics ; 12(1): 6, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781334

RESUMO

BACKGROUND: Medical texts such as radiology reports or electronic health records are a powerful source of data for researchers. Anonymization methods must be developed to de-identify documents containing personal information from both patients and medical staff. Although currently there are several anonymization strategies for the English language, they are also language-dependent. Here, we introduce a named entity recognition strategy for Spanish medical texts, translatable to other languages. RESULTS: We tested 4 neural networks on our radiology reports dataset, achieving a recall of 97.18% of the identifying entities. Alongside, we developed a randomization algorithm to substitute the detected entities with new ones from the same category, making it virtually impossible to differentiate real data from synthetic data. The three best architectures were tested with the MEDDOCAN challenge dataset of electronic health records as an external test, achieving a recall of 69.18%. CONCLUSIONS: The strategy proposed, combining named entity recognition tasks with randomization of entities, is suitable for Spanish radiology reports. It does not require a big training corpus, thus it could be easily extended to other languages and medical texts, such as electronic health records.


Assuntos
Idioma , Radiologia , Registros Eletrônicos de Saúde , Humanos , Processamento de Linguagem Natural , Redes Neurais de Computação
7.
Stem Cells Int ; 2020: 8872009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101423

RESUMO

Human bone marrow mesenchymal stem cells (BM-MSCs) and cardiac progenitor/stem cells (CPCs) have been extensively studied as a potential therapeutic treatment for myocardial infarction (MI). Previous reports suggest that lower doses of CPCs are needed to improve cardiac function relative to their bone marrow counterparts. Here, we confirmed this observations and investigated the surface protein expression profile that might explain this effect. Myocardial infarction was performed in nude rats by permanent ligation of the left coronary artery. Cardiac function and infarct size before and after cell transplantation were evaluated by echocardiography and morphometry, respectively. The CPC and BM-MSC receptome were analyzed by proteomic analysis of biotin-labeled surface proteins. Rats transplanted with CPCs showed a greater improvement in cardiac function after MI than those transplanted with BM-MSCs, and this was associated with a smaller infarct size. Analysis of the receptome of CPCs and BM-MSCs showed that gene ontology biological processes and KEGG pathways associated with adhesion mechanisms were upregulated in CPCs compared with BM-MSCs. Moreover, the membrane protein interactome in CPCs showed a strong relationship with biological processes related to cell adhesion whereas the BM-MSCs interactome was more related to immune regulation processes. We conclude that the stronger capacity of CPCs over BM-MSCs to engraft in the infarcted area is likely linked to a more pronounced cell adhesion expression program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA