Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958529

RESUMO

Umbilical cord blood (UCB) serves as a source of hematopoietic stem and progenitor cells (HSPCs) utilized in the regeneration of hematopoietic and immune systems, forming a crucial part of the treatment for various benign and malignant hematological diseases. UCB has been utilized as an alternative HSPC source to bone marrow (BM). Although the use of UCB has extended transplantation access to many individuals, it still encounters significant challenges in selecting a histocompatible UCB unit with an adequate cell dose for a substantial proportion of adults with malignant hematological diseases. Consequently, recent research has focused on developing ex vivo expansion strategies for UCB HSPCs. Our results demonstrate that co-cultures with the investigated mesenchymal stromal cells (MSCs) enable a 10- to 15-fold increase in the cellular dose of UCB HSPCs while partially regulating the proliferation capacity when compared to HSPCs expanded with early acting cytokines. Furthermore, the secretory profile of UCB-derived MSCs closely resembles that of BM-derived MSCs. Moreover, both co-cultures exhibit alterations in cytokine secretion, which could potentially impact HSPC proliferation during the expansion process. This study underscores the fact that UCB-derived MSCs possess a remarkably similar supportive capacity to BM-derived MSCs, implying their potential use as feeder layers in the ex vivo expansion process of HSPCs.


Assuntos
Doenças Hematológicas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Gravidez , Feminino , Adulto , Humanos , Antígenos CD34 , Sangue Fetal , Células-Tronco Hematopoéticas , Técnicas de Cocultura , Transplante de Células-Tronco Hematopoéticas/métodos , Proliferação de Células
2.
Plant Physiol Biochem ; 215: 109066, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39186850

RESUMO

The study aims to explore the natural variation in the metabolome of different populations of the invasive plant Carpobrotus from different genetic clusters and geographical origins to enhance our comprehension of its involvement in the adaptation process and phenotypic diversity. The metabolomic profile of shoots was analysed in four populations from two different genetic clusters (Cluster A: Cádiz and A Lanzada; Cluster B: La Marina and Samil) and two different biogeographical regions in Spain (Atlantic: Samil and A Lanzada; Mediterranean: Cádiz and La Marina), collected in the field and subsequently grown in the greenhouse. In addition, climatic, and physiological parameters were analysed. The Mediterranean populations (Cádiz and La Marina) showed lower initial weight and length measurements in morphological parameters than the Atlantic populations. On the contrary, only root parameters showed significant differences in growth parameters among populations. The analysis of ion levels revealed a consistent pattern of higher concentrations in shoots compared to roots, with significant differences among populations, particularly in sodium (Na+) and chlorides (Cl-) levels. Regarding metabolomic analysis, clear correlations between the metabolome, genetic and climatic conditions of Carpobrotus sp.pl populations are described. Pairwise comparisons using t-tests and Principal Component Analysis (PCA) indicated that the differences in metabolomic profile between the Samil and La Marina populations, which correspond to the same genetic cluster (cluster B), were smaller than in the rest of the comparisons indicating that populations from the same genetic cluster were more similar metabolically than those from the same climatic region. The study identified key metabolites representative of each cluster, with significant differences in amino acids, organic acids, and sugars contributing to the variation among populations. Pathway analysis highlighted the impact of climatic conditions on metabolic pathways, particularly in populations from Cluster A. In conclusion, the different populations were more similar according to the genetic cluster than to the climatic region of origin when studied at the metabolomic level. Consequently, the metabolites more representative of each cluster were also identified.


Assuntos
Espécies Introduzidas , Meio Ambiente , Metaboloma , Espanha
3.
Plants (Basel) ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446961

RESUMO

Screening suitable allelopathic crops and crop genotypes that are competitive with weeds can be a sustainable weed control strategy to reduce the massive use of herbicides. In this study, three accessions of common buckwheat Fagopyrum esculentum Moench. (Gema, Kora, and Eva) and one of Tartary buckwheat Fagopyrum tataricum Gaertn. (PI481671) were screened against the germination and growth of the herbicide-resistant weeds Lolium rigidum Gaud. and Portulaca oleracea L. The chemical profile of the four buckwheat accessions was characterised in their shoots, roots, and root exudates in order to know more about their ability to sustainably manage weeds and the relation of this ability with the polyphenol accumulation and exudation from buckwheat plants. Our results show that different buckwheat genotypes may have different capacities to produce and exude several types of specialized metabolites, which lead to a wide range of allelopathic and defence functions in the agroecosystem to sustainably manage the growing weeds in their vicinity. The ability of the different buckwheat accessions to suppress weeds was accession-dependent without differences between species, as the common (Eva, Gema, and Kora) and Tartary (PI481671) accessions did not show any species-dependent pattern in their ability to control the germination and growth of the target weeds. Finally, Gema appeared to be the most promising accession to be evaluated in organic farming due to its capacity to sustainably control target weeds while stimulating the root growth of buckwheat plants.

4.
Plant Physiol Biochem ; 196: 507-519, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36764266

RESUMO

The sesquiterpene farnesene and the monoterpene citral are phytotoxic natural compounds characterized by a high similarity in macroscopic effects, suggesting an equal or similar mechanism of action when assayed at IC50 concentration. In the present study, a short-time experiment (24 and 48 h) using an imaging spectrofluorometer allowed us to monitor the in-vivo effects of the two molecules, highlighting that both terpenoids were similarly affecting all PSII parameters, even when the effects of citral were quicker in appearing than those of farnesene. The multivariate, univariate, and pathway analyses, carried out on untargeted-metabolomic data, confirmed a clear separation of the plant metabolome in response to the two treatments, whereas similarity in the affected pathways was observed. The main metabolites affected were amino acids and polyamine, which significantly accumulated in response to both treatments. On the contrary, a reduction in sugar content (i.e. glucose and sucrose) was observed. Finally, the in-silico studies demonstrated a similar mechanism of action for both molecules by interacting with DNA binding proteins, although differences concerning the affinity with the proteins with which they could potentially interact were also highlighted. Despite the similarities in macroscopic effects of these two molecules, the metabolomic and in-silico data suggest that both terpenoids share a similar but not equal mechanism of action and that the similar effects observed on the photosynthetic machinery are more imputable to a side effect of molecules-induced oxidative stress.


Assuntos
Arabidopsis , Sesquiterpenos , Terpenos/farmacologia , Terpenos/metabolismo , Arabidopsis/genética , Plântula/metabolismo , Proteínas de Ligação a DNA , Sesquiterpenos/metabolismo
5.
Plants (Basel) ; 12(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36616318

RESUMO

trans-Cinnamic acid is a phenolic compound widely studied in plant metabolism due to its importance in regulating different plant processes. Previous studies on maize plants showed that this compound could affect plant growth and causes metabolic changes in the leaves when applied. However, its effects on root metabolism are not well known. This study analyses the short-term effect of trans-cinnamic acid on the morphology of vascular bundle elements and metabolism in maize roots. At short times (between 6 and 12 h), there is a reduction in the content of many amino acids which may be associated with the altered nitrogen uptake observed in earlier work. In addition, the compound caused an alteration of the vascular bundles at 48 h and seemed to have changed the metabolism in roots to favor lignin and galactose synthesis. The results obtained complement those previously carried out on maize plants, demonstrating that in the short term trans-cinnamic acid can trigger stress-coping processes in the treated plants.

6.
Front Plant Sci ; 14: 1157309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152151

RESUMO

Introduction: Trans-cinnamaldehyde is a specialised metabolite that naturally occurs in plants of the Lauraceae family. This study focused on the phytotoxic effects of this compound on the morphology and metabolism of Arabidopsis thaliana seedlings. Material and methods: To evaluate the phytotoxicity of trans-cinnamaldehyde, a dose-response curve was first performed for the root growth process in order to calculate the reference inhibitory concentrations IC50 and IC80 (trans-cinnamaldehyde concentrations inducing a 50% and 80% inhibition, respectively). Subsequently, the structure and ultrastructure of the roots treated with the compound were analysed by light and electron microscopy. Based on these results, the following assays were carried out to in depth study the possible mode of action of the compound: antiauxinic PCIB reversion bioassay, determination of mitochondrial membrane potential, ROS detection, lipid peroxidation content, hormone quantification, in silico studies and gene expression of ALDH enzymes. Results: Trans-cinnamaldehyde IC50 and IC80 values were as low as 46 and 87 µM, reducing the root growth and inducing the occurrence of adventitious roots. At the ultrastructural level, the compound caused alterations to the mitochondria, which were confirmed by detection of the mitochondrial membrane potential. The morphology observed after the treatment (i.e., appearance of adventitious roots) suggested a possible hormonal mismatch at the auxin level, which was confirmed after PCIB bioassay and hormone quantification by GC-MS. The addition of the compound caused an increase in benzoic, salicylic and indoleacetic acid content, which was related to the increased gene expression of the aldehyde dehydrogenase enzymes that can drive the conversion of trans-cinnamaldehyde to cinnamic acid. Also, an increase of ROS was also observed in treated roots. The enzyme-compound interaction was shown to be stable over time by docking and molecular dynamics assays. Discussion: The aldehyde dehydrogenases could drive the conversion of trans-cinnamaldehyde to cinnamic acid, increasing the levels of benzoic, salicylic and indoleacetic acids and causing the oxidative stress symptoms observed in the treated seedlings. This would result into growth and development inhibition of the trans-cinnamaldehyde-treated seedlings and ultimately in their programmed-cell-death.

7.
Plant Physiol Biochem ; 179: 78-89, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35325658

RESUMO

Harmaline is an indole alkaloid with demonstrated phytotoxicity and recognized pharmacological applications. However, no information is available concerning its mode of action on plant metabolism. Therefore, the present work evaluated bioherbicide mode of action of harmaline on plant metabolism of Arabidopsis thaliana (L.) Heynh. Harmaline induced a strong inhibitory activity on root growth of treated seedlings, reaching IC50 and IC80 values of 14 and 29 µM, respectively. Treated roots were shorter and thicker than control and were characterized by a shorter root meristem size and an increase of root hairs production. Harmaline induced ultrastructural changes such as increment of cell wall thickness, higher density and condensation of mitochondria and vacuolization, appearance of cell wall deposits, increment of Golgi secretory activity and higher percentage of aberrant nuclei. The ethylene inhibitor AgNO3 reversed high root hair appearance and increment of root thickness, and pTCSn::GFP transgenic line showed fluorescence cytokinin signal in stele zone after harmaline treatment that was absent in control, whereas the auxin signal in the transgenic line DR5 was significantly reduced by the treatment. All these results suggest that the mode of action of harmaline could be involving auxin, ethylene and cytokinin synergic/antagonistic action.


Assuntos
Arabidopsis , Meristema , Arabidopsis/metabolismo , Harmalina/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Meristema/metabolismo , Raízes de Plantas/metabolismo
8.
Plant Physiol Biochem ; 151: 378-390, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32278957

RESUMO

Norharmane is an indole alkaloid that can be found in several terrestrial plants, as well as in some dinoflagellates and cyanobacteria. The aim of this study was to focus on the way this metabolite impacts the plant metabolism of the model species Arabidopsis thaliana. This metabolite caused increase of secondary and adventitious roots, as well as torsion, toxic effects, and a decrease in root length. Moreover, norharmane altered the cellular arrangement, resulting in unfinished cell walls, decreased auxin content and inhibited PIN proteins activity. All the alterations suggest that norharmane alters polar auxin transport by inhibiting PIN2, PIN3 and PIN7 transport proteins, thus causing a significant inhibitory effect on the growth of A. thaliana seedlings.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Carbolinas , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Carbolinas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos
9.
Plants (Basel) ; 9(10)2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050191

RESUMO

Norharmane is a secondary metabolite that appears in different species of land plants. In this paper, we investigated for the first time the specificity of norharmane through germination and growth tests on some crops as Zeamays L. (maize), Triticumaestivum L. (wheat), Oryza sativa L. (rice) and Lactucasativa L. (lettuce) and weeds as Amaranthusretroflexus L. (amaranth), Echinochloacrus-galli L. (barnyard grass), Plantago lanceolata L. (ribwort), Portulaca oleracea L. (common purslane) and Avenafatua L. (wild oat), and its phytotoxic capacity on the metabolism of adult Arabidopsis thaliana L. (thale cress) by measuring chlorophyll a fluorescence, pigment content, total proteins, osmotic potential and morphological analysis. Norharmane had an inhibitory effect on the germination of A.fatua and P.lanceolata, and the growth of P.oleracea, E.crus-galli and A.retroflexus. On adult A. thaliana plants, the compound was more effective to watering, leading to water stress that compromised the growth of the plants and ultimately affected the photosynthetic apparatus. Therefore, this research shows that norharmane not only affects seedlings' metabolism, but also damages the metabolism of adult plants and can be a potential model for a future bioherbicide given its specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA