Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Annu Rev Immunol ; 42(1): 455-488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360546

RESUMO

Ten-eleven translocation (TET) proteins are iron-dependent and α-ketoglutarate-dependent dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. TET proteins are recruited by transcription factors and by RNA polymerase II to modify 5mC at enhancers and gene bodies, thereby regulating gene expression during development, cell lineage specification, and cell activation. It is not yet clear, however, how the established biochemical activities of TET enzymes in oxidizing 5mC and mediating DNA demethylation relate to the known association of TET deficiency with inflammation, clonal hematopoiesis, and cancer. There are hints that the ability of TET deficiency to promote cell proliferation in a signal-dependent manner may be harnessed for cancer immunotherapy. In this review, we draw upon recent findings in cells of the immune system to illustrate established as well as emerging ideas of how TET proteins influence cellular function.


Assuntos
Desmetilação do DNA , Dioxigenases , Imunoterapia , Inflamação , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Inflamação/metabolismo , Inflamação/imunologia , Imunoterapia/métodos , Dioxigenases/metabolismo , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Epigênese Genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética
2.
Proc Natl Acad Sci U S A ; 120(6): e2214824120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-37406303

RESUMO

The three mammalian TET dioxygenases oxidize the methyl group of 5-methylcytosine in DNA, and the oxidized methylcytosines are essential intermediates in all known pathways of DNA demethylation. To define the in vivo consequences of complete TET deficiency, we inducibly deleted all three Tet genes in the mouse genome. Tet1/2/3-inducible TKO (iTKO) mice succumbed to acute myeloid leukemia (AML) by 4 to 5 wk. Single-cell RNA sequencing of Tet iTKO bone marrow cells revealed the appearance of new myeloid cell populations characterized by a striking increase in expression of all members of the stefin/cystatin gene cluster on mouse chromosome 16. In patients with AML, high stefin/cystatin gene expression correlates with poor clinical outcomes. Increased expression of the clustered stefin/cystatin genes was associated with a heterochromatin-to-euchromatin compartment switch with readthrough transcription downstream of the clustered stefin/cystatin genes as well as other highly expressed genes, but only minor changes in DNA methylation. Our data highlight roles for TET enzymes that are distinct from their established function in DNA demethylation and instead involve increased transcriptional readthrough and changes in three-dimensional genome organization.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Animais , Camundongos , Heterocromatina/genética , Eucromatina , Metilação de DNA , 5-Metilcitosina/metabolismo , Leucemia Mieloide Aguda/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Mamíferos/genética
3.
Immunity ; 45(6): 1327-1340, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27939672

RESUMO

In response to acute infection, naive CD8+ T cells expand, differentiate into effector cells, and then contract to a long-lived pool of memory cells after pathogen clearance. During chronic infections or in tumors, CD8+ T cells acquire an "exhausted" phenotype. Here we present genome-wide comparisons of chromatin accessibility and gene expression from endogenous CD8+ T cells responding to acute and chronic viral infection using ATAC-seq and RNA-seq techniques. Acquisition of effector, memory, or exhausted phenotypes was associated with stable changes in chromatin accessibility away from the naive T cell state. Regions differentially accessible between functional subsets in vivo were enriched for binding sites of transcription factors known to regulate these subsets, including E2A, BATF, IRF4, T-bet, and TCF1. Exhaustion-specific accessible regions were enriched for consensus binding sites for NFAT and Nr4a family members, indicating that chronic stimulation confers a unique accessibility profile on exhausted cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Montagem e Desmontagem da Cromatina/imunologia , Expressão Gênica/imunologia , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Animais , Infecções por Arenaviridae/imunologia , Cromatina , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
Nature ; 567(7749): 530-534, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814732

RESUMO

T cells expressing chimeric antigen receptors (CAR T cells) targeting human CD19 (hCD19) have shown clinical efficacy against B cell malignancies1,2. CAR T cells have been less effective against solid tumours3-5, in part because they enter a hyporesponsive ('exhausted' or 'dysfunctional') state6-9 triggered by chronic antigen stimulation and characterized by upregulation of inhibitory receptors and loss of effector function. To investigate the function of CAR T cells in solid tumours, we transferred hCD19-reactive CAR T cells into hCD19+ tumour-bearing mice. CD8+CAR+ tumour-infiltrating lymphocytes and CD8+ endogenous tumour-infiltrating lymphocytes expressing the inhibitory receptors PD-1 and TIM3 exhibited similar profiles of gene expression and chromatin accessibility, associated with secondary activation of nuclear receptor transcription factors NR4A1 (also known as NUR77), NR4A2 (NURR1) and NR4A3 (NOR1) by the initiating transcription factor NFAT (nuclear factor of activated T cells)10-12. CD8+ T cells from humans with cancer or chronic viral infections13-15 expressed high levels of NR4A transcription factors and displayed enrichment of NR4A-binding motifs in accessible chromatin regions. CAR T cells lacking all three NR4A transcription factors (Nr4a triple knockout) promoted tumour regression and prolonged the survival of tumour-bearing mice. Nr4a triple knockout CAR tumour-infiltrating lymphocytes displayed phenotypes and gene expression profiles characteristic of CD8+ effector T cells, and chromatin regions uniquely accessible in Nr4a triple knockout CAR tumour-infiltrating lymphocytes compared to wild type were enriched for binding motifs for NF-κB and AP-1, transcription factors involved in activation of T cells. We identify NR4A transcription factors as having an important role in the cell-intrinsic program of T cell hyporesponsiveness and point to NR4A inhibition as a promising strategy for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias/genética , Neoplasias/imunologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Fatores de Transcrição/metabolismo , Transferência Adotiva , Animais , Antígenos CD19/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neoplasias/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores de Esteroides/deficiência , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/deficiência , Receptores dos Hormônios Tireóideos/metabolismo , Taxa de Sobrevida , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/deficiência
5.
Nature ; 530(7588): 103-7, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26814965

RESUMO

The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.


Assuntos
Envelhecimento/fisiologia , Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Morte , Dieta , Fatores de Transcrição Forkhead/genética , Cinética , Longevidade/genética , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Receptor de Insulina/genética , Risco , Temperatura , Fatores de Tempo , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 116(34): 16933-16942, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31371502

RESUMO

Cancer genomes are characterized by focal increases in DNA methylation, co-occurring with widespread hypomethylation. Here, we show that TET loss of function results in a similar genomic footprint. Both 5hmC in wild-type (WT) genomes and DNA hypermethylation in TET-deficient genomes are largely confined to the active euchromatic compartment, consistent with the known functions of TET proteins in DNA demethylation and the known distribution of 5hmC at transcribed genes and active enhancers. In contrast, an unexpected DNA hypomethylation noted in multiple TET-deficient genomes is primarily observed in the heterochromatin compartment. In a mouse model of T cell lymphoma driven by TET deficiency (Tet2/3 DKO T cells), genomic analysis of malignant T cells revealed DNA hypomethylation in the heterochromatic genomic compartment, as well as reactivation of repeat elements and enrichment for single-nucleotide alterations, primarily in heterochromatic regions of the genome. Moreover, hematopoietic stem/precursor cells (HSPCs) doubly deficient for Tet2 and Dnmt3a displayed greater losses of DNA methylation than HSPCs singly deficient for Tet2 or Dnmt3a alone, potentially explaining the unexpected synergy between DNMT3A and TET2 mutations in myeloid and lymphoid malignancies. Tet1-deficient cells showed decreased localization of DNMT3A in the heterochromatin compartment compared with WT cells, pointing to a functional interaction between TET and DNMT proteins and providing a potential explanation for the hypomethylation observed in TET-deficient genomes. Our data suggest that TET loss of function may at least partially underlie the characteristic pattern of global hypomethylation coupled to regional hypermethylation observed in diverse cancer genomes, and highlight the potential contribution of heterochromatin hypomethylation to oncogenesis.


Assuntos
Metilação de DNA , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA/deficiência , Células-Tronco Hematopoéticas/metabolismo , Linfoma de Células T/metabolismo , Neoplasias Experimentais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Animais , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/patologia , Heterocromatina/genética , Heterocromatina/metabolismo , Heterocromatina/patologia , Humanos , Linfoma de Células T/genética , Linfoma de Células T/patologia , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(25): 12410-12415, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31152140

RESUMO

T cells expressing chimeric antigen receptors (CAR T cells) have shown impressive therapeutic efficacy against leukemias and lymphomas. However, they have not been as effective against solid tumors because they become hyporesponsive ("exhausted" or "dysfunctional") within the tumor microenvironment, with decreased cytokine production and increased expression of several inhibitory surface receptors. Here we define a transcriptional network that mediates CD8+ T cell exhaustion. We show that the high-mobility group (HMG)-box transcription factors TOX and TOX2, as well as members of the NR4A family of nuclear receptors, are targets of the calcium/calcineurin-regulated transcription factor NFAT, even in the absence of its partner AP-1 (FOS-JUN). Using a previously established CAR T cell model, we show that TOX and TOX2 are highly induced in CD8+ CAR+ PD-1high TIM3high ("exhausted") tumor-infiltrating lymphocytes (CAR TILs), and CAR TILs deficient in both TOX and TOX2 (Tox DKO) are more effective than wild-type (WT), TOX-deficient, or TOX2-deficient CAR TILs in suppressing tumor growth and prolonging survival of tumor-bearing mice. Like NR4A-deficient CAR TILs, Tox DKO CAR TILs show increased cytokine expression, decreased expression of inhibitory receptors, and increased accessibility of regions enriched for motifs that bind activation-associated nuclear factor κB (NFκB) and basic region-leucine zipper (bZIP) transcription factors. These data indicate that Tox and Nr4a transcription factors are critical for the transcriptional program of CD8+ T cell exhaustion downstream of NFAT. We provide evidence for positive regulation of NR4A by TOX and of TOX by NR4A, and suggest that disruption of TOX and NR4A expression or activity could be promising strategies for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Depleção Linfocítica , Fatores de Transcrição/metabolismo , Animais , Imunoterapia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Ligação Proteica , RNA Mensageiro/genética , Fatores de Transcrição/genética , Microambiente Tumoral
8.
PLoS Genet ; 10(3): e1004225, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675767

RESUMO

Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Insulina/genética , Receptor de Insulina/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Redes Reguladoras de Genes , Insulina/metabolismo , Longevidade/genética , Fenótipo , Receptor de Insulina/metabolismo , Transdução de Sinais/genética , Somatomedinas/genética , Somatomedinas/metabolismo
9.
Nat Methods ; 10(7): 665-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23666410

RESUMO

The measurement of lifespan pervades aging research. Because lifespan results from complex interactions between genetic, environmental and stochastic factors, it varies widely even among isogenic individuals. The actions of molecular mechanisms on lifespan are therefore visible only through their statistical effects on populations. Indeed, survival assays in Caenorhabditis elegans have provided critical insights into evolutionarily conserved determinants of aging. To enable the rapid acquisition of survival curves at an arbitrary statistical resolution, we developed a scalable imaging and analysis platform to observe nematodes over multiple weeks across square meters of agar surface at 8-µm resolution. The automated method generates a permanent visual record of individual deaths from which survival curves are constructed and validated, producing data consistent with results from the manual method of survival curve acquisition for several mutants in both standard and stressful environments. Our approach permits rapid, detailed reverse-genetic and chemical screens for effects on survival and enables quantitative investigations into the statistical structure of aging.


Assuntos
Caenorhabditis elegans/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Expectativa de Vida , Longevidade/fisiologia , Análise de Sobrevida , Taxa de Sobrevida , Gravação em Vídeo/métodos , Animais
10.
PLoS Pathog ; 10(6): e1004200, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945527

RESUMO

Microsporidia comprise a phylum of over 1400 species of obligate intracellular pathogens that can infect almost all animals, but little is known about the host response to these parasites. Here we use the whole-animal host C. elegans to show an in vivo role for ubiquitin-mediated response to the microsporidian species Nematocida parisii, as well to the Orsay virus, another natural intracellular pathogen of C. elegans. We analyze gene expression of C. elegans in response to N. parisii, and find that it is similar to response to viral infection. Notably, we find an upregulation of SCF ubiquitin ligase components, such as the cullin ortholog cul-6, which we show is important for ubiquitin targeting of N. parisii cells in the intestine. We show that ubiquitylation components, the proteasome, and the autophagy pathway are all important for defense against N. parisii infection. We also find that SCF ligase components like cul-6 promote defense against viral infection, where they have a more robust role than against N. parisii infection. This difference may be due to suppression of the host ubiquitylation system by N. parisii: when N. parisii is crippled by anti-microsporidia drugs, the host can more effectively target pathogen cells for ubiquitylation. Intriguingly, inhibition of the ubiquitin-proteasome system (UPS) increases expression of infection-upregulated SCF ligase components, indicating that a trigger for transcriptional response to intracellular infection by N. parisii and virus may be perturbation of the UPS. Altogether, our results demonstrate an in vivo role for ubiquitin-mediated defense against microsporidian and viral infections in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/parasitologia , Caenorhabditis elegans/virologia , Proteínas Culina/imunologia , Microsporídios/patogenicidade , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitinação/genética , Animais , Autofagia/genética , Autofagia/imunologia , Sequência de Bases , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Culina/biossíntese , Interações Hospedeiro-Patógeno , Microsporídios/imunologia , Interferência de RNA , RNA Interferente Pequeno , Proteínas Ligases SKP Culina F-Box/antagonistas & inibidores , Proteínas Ligases SKP Culina F-Box/metabolismo , Análise de Sequência de RNA , Transcrição Gênica/genética , Ubiquitina/metabolismo
11.
Science ; 378(6623): 948-949, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454845

RESUMO

Active DNA demethylation maintains enhancer activity in nonproliferating cells but can damage DNA.


Assuntos
Quebras de DNA de Cadeia Simples , Desmetilação do DNA , Elementos Facilitadores Genéticos , Macrófagos/metabolismo , Neurônios/metabolismo , Humanos
12.
Nat Commun ; 13(1): 6230, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266342

RESUMO

TET (Ten-Eleven Translocation) dioxygenases effect DNA demethylation through successive oxidation of the methyl group of 5-methylcytosine (5mC) in DNA. In humans and in mouse models, TET loss-of-function has been linked to DNA damage, genome instability and oncogenesis. Here we show that acute deletion of all three Tet genes, after brief exposure of triple-floxed, Cre-ERT2-expressing mouse embryonic stem cells (mESC) to 4-hydroxytamoxifen, results in chromosome mis-segregation and aneuploidy; moreover, embryos lacking all three TET proteins showed striking variation in blastomere numbers and nuclear morphology at the 8-cell stage. Transcriptional profiling revealed that mRNA encoding a KH-domain protein, Khdc3 (Filia), was downregulated in triple TET-deficient mESC, concomitantly with increased methylation of CpG dinucleotides in the vicinity of the Khdc3 gene. Restoring KHDC3 levels in triple Tet-deficient mESC prevented aneuploidy. Thus, TET proteins regulate Khdc3 gene expression, and TET deficiency results in mitotic infidelity and genome instability in mESC at least partly through decreased expression of KHDC3.


Assuntos
Aneuploidia , Proteínas de Ligação a DNA , Dioxigenases , Células-Tronco Embrionárias Murinas , Animais , Camundongos , 5-Metilcitosina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , DNA/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo
13.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-31965999

RESUMO

In mammals, DNA methyltransferases transfer a methyl group from S-adenosylmethionine to the 5 position of cytosine in DNA. The product of this reaction, 5-methylcytosine (5mC), has many roles, particularly in suppressing transposable and repeat elements in DNA. Moreover, in many cellular systems, cell lineage specification is accompanied by DNA demethylation at the promoters of genes expressed at high levels in the differentiated cells. However, since direct cleavage of the C-C bond connecting the methyl group to the 5 position of cytosine is thermodynamically disfavoured, the question of whether DNA methylation was reversible remained unclear for many decades. This puzzle was solved by our discovery of the TET (Ten- Eleven Translocation) family of 5-methylcytosine oxidases, which use reduced iron, molecular oxygen and the tricarboxylic acid cycle metabolite 2-oxoglutarate (also known as a-ketoglutarate) to oxidise the methyl group of 5mC to 5-hydroxymethylcytosine (5hmC) and beyond. TET-generated oxidised methylcytosines are intermediates in at least two pathways of DNA demethylation, which differ in their dependence on DNA replication. In the decade since their discovery, TET enzymes have been shown to have important roles in embryonic development, cell lineage specification, neuronal function and cancer. We review these findings and discuss their implications here.


Assuntos
Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/genética , Dioxigenases/genética , 5-Metilcitosina/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário/genética , Humanos , Oxirredução , S-Adenosilmetionina/metabolismo
15.
Nat Commun ; 6: 10071, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26607761

RESUMO

TET-family dioxygenases oxidize 5-methylcytosine (5mC) in DNA, and exert tumour suppressor activity in many types of cancers. Even in the absence of TET coding region mutations, TET loss-of-function is strongly associated with cancer. Here we show that acute elimination of TET function induces the rapid development of an aggressive, fully-penetrant and cell-autonomous myeloid leukaemia in mice, pointing to a causative role for TET loss-of-function in this myeloid malignancy. Phenotypic and transcriptional profiling shows aberrant differentiation of haematopoietic stem/progenitor cells, impaired erythroid and lymphoid differentiation and strong skewing to the myeloid lineage, with only a mild relation to changes in DNA modification. We also observe progressive accumulation of phospho-H2AX and strong impairment of DNA damage repair pathways, suggesting a key role for TET proteins in maintaining genome integrity.


Assuntos
Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/metabolismo , Animais , Reparo do DNA/genética , Dioxigenases , Histonas/metabolismo , Leucemia Mieloide/patologia , Camundongos , Camundongos Knockout , Fosforilação , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA