Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(14): 3716-3721, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29463731

RESUMO

The plant hormone gibberellic acid (GA) is a crucial regulator of growth and development. The main paradigm of GA signaling puts forward transcriptional regulation via the degradation of DELLA transcriptional repressors. GA has also been shown to regulate tropic responses by modulation of the plasma membrane incidence of PIN auxin transporters by an unclear mechanism. Here we uncovered the cellular and molecular mechanisms by which GA redirects protein trafficking and thus regulates cell surface functionality. Photoconvertible reporters revealed that GA balances the protein traffic between the vacuole degradation route and recycling back to the cell surface. Low GA levels promote vacuolar delivery and degradation of multiple cargos, including PIN proteins, whereas high GA levels promote their recycling to the plasma membrane. This GA effect requires components of the retromer complex, such as Sorting Nexin 1 (SNX1) and its interacting, microtubule (MT)-associated protein, the Cytoplasmic Linker-Associated Protein (CLASP1). Accordingly, GA regulates the subcellular distribution of SNX1 and CLASP1, and the intact MT cytoskeleton is essential for the GA effect on trafficking. This GA cellular action occurs through DELLA proteins that regulate the MT and retromer presumably via their interaction partners Prefoldins (PFDs). Our study identified a branching of the GA signaling pathway at the level of DELLA proteins, which, in parallel to regulating transcription, also target by a nontranscriptional mechanism the retromer complex acting at the intersection of the degradation and recycling trafficking routes. By this mechanism, GA can redirect receptors and transporters to the cell surface, thus coregulating multiple processes, including PIN-dependent auxin fluxes during tropic responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Vacúolos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/farmacologia , Microtúbulos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Transporte Proteico , Transdução de Sinais , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(2): 452-7, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26715743

RESUMO

The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin-myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth.


Assuntos
Actinas/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Vacúolos/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Arabidopsis/efeitos dos fármacos , Imageamento Tridimensional , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Meristema/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Modelos Moleculares , Mutação/genética , Miosinas/metabolismo , Fosfatidilinositóis/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestrutura
3.
Plant Physiol ; 169(4): 2789-804, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26511912

RESUMO

The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth.


Assuntos
Arabidopsis/genética , Proteínas Fúngicas/genética , Inflorescência/genética , Ustilaginales/genética , Zea mays/genética , Sequência de Aminoácidos , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Sequência de Bases , Transporte Biológico/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Hifas/genética , Hifas/metabolismo , Ácidos Indolacéticos/metabolismo , Inflorescência/metabolismo , Inflorescência/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Meristema/genética , Meristema/metabolismo , Meristema/fisiologia , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Homologia de Sequência do Ácido Nucleico , Técnicas do Sistema de Duplo-Híbrido , Ustilaginales/metabolismo , Ustilaginales/fisiologia , Zea mays/microbiologia , Zea mays/fisiologia
4.
Plant Cell ; 25(12): 4894-911, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24326589

RESUMO

The functions of the minor phospholipid phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] during vegetative plant growth remain obscure. Here, we targeted two related phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) PIP5K1 and PIP5K2, which are expressed ubiquitously in Arabidopsis thaliana. A pip5k1 pip5k2 double mutant with reduced PtdIns(4,5)P2 levels showed dwarf stature and phenotypes suggesting defects in auxin distribution. The roots of the pip5k1 pip5k2 double mutant had normal auxin levels but reduced auxin transport and altered distribution. Fluorescence-tagged auxin efflux carriers PIN-FORMED (PIN1)-green fluorescent protein (GFP) and PIN2-GFP displayed abnormal, partially apolar distribution. Furthermore, fewer brefeldin A-induced endosomal bodies decorated by PIN1-GFP or PIN2-GFP formed in pip5k1 pip5k2 mutants. Inducible overexpressor lines for PIP5K1 or PIP5K2 also exhibited phenotypes indicating misregulation of auxin-dependent processes, and immunolocalization showed reduced membrane association of PIN1 and PIN2. PIN cycling and polarization require clathrin-mediated endocytosis and labeled clathrin light chain also displayed altered localization patterns in the pip5k1 pip5k2 double mutant, consistent with a role for PtdIns(4,5)P2 in the regulation of clathrin-mediated endocytosis. Further biochemical tests on subcellular fractions enriched for clathrin-coated vesicles (CCVs) indicated that pip5k1 and pip5k2 mutants have reduced CCV-associated PI4P 5-kinase activity. Together, the data indicate an important role for PtdIns(4,5)P2 in the control of clathrin dynamics and in auxin distribution in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Transporte Biológico , Vesículas Revestidas por Clatrina/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/metabolismo , Polaridade Celular , Endocitose , Proteínas de Fluorescência Verde/análise , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
5.
Proc Natl Acad Sci U S A ; 110(9): 3627-32, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23391733

RESUMO

Gravitropic bending of plant organs is mediated by an asymmetric signaling of the plant hormone auxin between the upper and lower side of the respective organ. Here, we show that also another plant hormone, gibberellic acid (GA), shows asymmetric action during gravitropic responses. Immunodetection using an antibody against GA and monitoring GA signaling output by downstream degradation of DELLA proteins revealed an asymmetric GA distribution and response with the maximum at the lower side of gravistimulated roots. Genetic or pharmacological manipulation of GA levels or response affects gravity-mediated auxin redistribution and root bending response. The higher GA levels at the lower side of the root correlate with increased amounts of PIN-FORMED2 (PIN2) auxin transporter at the plasma membrane. The observed increase in PIN2 stability is caused by a specific GA effect on trafficking of PIN proteins to lytic vacuoles that presumably occurs downstream of brefeldin A-sensitive endosomes. Our results suggest that asymmetric auxin distribution instructive for gravity-induced differential growth is consolidated by the asymmetric action of GA that stabilizes the PIN-dependent auxin stream along the lower side of gravistimulated roots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Giberelinas/metabolismo , Gravitropismo/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/fisiologia , Vacúolos/metabolismo , Arabidopsis/efeitos dos fármacos , Brefeldina A/farmacologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Giberelinas/farmacologia , Gravitação , Raízes de Plantas/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
6.
J Exp Bot ; 66(16): 5103-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041320

RESUMO

The phytohormone auxin is a vital growth regulator in plants. In the root epidermis auxin steers root organ growth. However, the mechanisms that allow adjacent tissues to integrate growth are largely unknown. Here, the focus is on neighbouring epidermal root tissues to assess the integration of auxin-related growth responses. The pharmacologic, genetic, and live-cell imaging approaches reveal that PIN2 auxin efflux carriers are differentially controlled in tricho- and atrichoblast cells. PIN2 proteins show lower abundance at the plasma membrane of trichoblast cells, despite showing higher rates of intracellular trafficking in these cells. The data suggest that PIN2 proteins display distinct cell-type-dependent trafficking rates to the lytic vacuole for degradation. Based on this insight, it is hypothesized that auxin-dependent processes are distinct in tricho- and atrichoblast cells. Moreover, genetic interference with epidermal patterning supports this assumption and suggests that tricho- and atrichoblasts have distinct importance for auxin-sensitive root growth and gravitropic responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Epiderme Vegetal/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Epiderme Vegetal/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transporte Proteico
7.
Proc Natl Acad Sci U S A ; 109(5): 1554-9, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307611

RESUMO

Gradients of the plant hormone auxin, which depend on its active intercellular transport, are crucial for the maintenance of root meristematic activity. This directional transport is largely orchestrated by a complex interaction of specific influx and efflux carriers that mediate the auxin flow into and out of cells, respectively. Besides these transport proteins, plant-specific polyphenolic compounds known as flavonols have been shown to act as endogenous regulators of auxin transport. However, only limited information is available on how flavonol synthesis is developmentally regulated. Using reduction-of-function and overexpression approaches in parallel, we demonstrate that the WRKY23 transcription factor is needed for proper root growth and development by stimulating the local biosynthesis of flavonols. The expression of WRKY23 itself is controlled by auxin through the Auxin Response Factor 7 (ARF7) and ARF19 transcriptional response pathway. Our results suggest a model in which WRKY23 is part of a transcriptional feedback loop of auxin on its own transport through local regulation of flavonol biosynthesis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Flavonóis/biossíntese , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo
8.
Plant Cell ; 23(5): 1920-31, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21551390

RESUMO

Endocytosis is a crucial mechanism by which eukaryotic cells internalize extracellular and plasma membrane material, and it is required for a multitude of cellular and developmental processes in unicellular and multicellular organisms. In animals and yeast, the best characterized pathway for endocytosis depends on the function of the vesicle coat protein clathrin. Clathrin-mediated endocytosis has recently been demonstrated also in plant cells, but its physiological and developmental roles remain unclear. Here, we assessed the roles of the clathrin-mediated mechanism of endocytosis in plants by genetic means. We interfered with clathrin heavy chain (CHC) function through mutants and dominant-negative approaches in Arabidopsis thaliana and established tools to manipulate clathrin function in a cell type-specific manner. The chc2 single mutants and dominant-negative CHC1 (HUB) transgenic lines were defective in bulk endocytosis as well as in internalization of prominent plasma membrane proteins. Interference with clathrin-mediated endocytosis led to defects in constitutive endocytic recycling of PIN auxin transporters and their polar distribution in embryos and roots. Consistent with this, these lines had altered auxin distribution patterns and associated auxin transport-related phenotypes, such as aberrant embryo patterning, imperfect cotyledon specification, agravitropic growth, and impaired lateral root organogenesis. Together, these data demonstrate a fundamental role for clathrin function in cell polarity, growth, patterning, and organogenesis in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Vesículas Revestidas por Clatrina/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Ácidos Indolacéticos/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Polaridade Celular , Genes Reporter , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
9.
J Integr Plant Biol ; 55(9): 864-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23945284

RESUMO

The regulation of cellular growth is of vital importance for embryonic and postembryonic patterning. Growth regulation in the epidermis has importance for organ growth rates in roots and shoots, proposing epidermal cells as an interesting model for cellular growth regulation. Here we assessed whether the root epidermis is a suitable model system to address cell size determination. In Arabidopsis thaliana L., root epidermal cells are regularly spaced in neighbouring tricho- (root hair) and atrichoblast (non-hair) cells, showing already distinct cell size regulation in the root meristem. We determined cell sizes in the root meristem and at the onset of cellular elongation, revealing that not only division rates but also cellular shape is distinct in tricho- and atrichoblasts. Intriguingly, epidermal-patterning mutants, failing to define differential vacuolization in neighbouring epidermal cell files, also display non-differential growth. Using these epidermal-patterning mutants, we show that polarized growth behaviour of epidermal tricho- and atrichoblast is interdependent, suggesting non-cell autonomous signals to integrate tissue expansion. Besides the interweaved cell-type-dependent growth mechanism, we reveal an additional role for epidermal patterning genes in root meristem size and organ growth regulation. We conclude that epidermal cells represent a suitable model system to study cell size determination and interdependent tissue growth.


Assuntos
Arabidopsis/genética , Padronização Corporal/genética , Tamanho Celular , Genes de Plantas/genética , Meristema/anatomia & histologia , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Forma Celular/genética , Meristema/genética , Mutação/genética , Transdução de Sinais/genética
10.
Ecol Lett ; 15(12): 1397-405, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22943183

RESUMO

Positive relationship between biodiversity and ecosystem functioning has been observed in many studies, but how this relationship is affected by environmental stress is largely unknown. To explore this influence, we measured the biomass of microalgae grown in microcosms along two stress gradients, heat and salinity, and compared our results with 13 published case studies that measured biodiversity-ecosystem functioning relationships under varying environmental conditions. We found that positive effects of biodiversity on ecosystem functioning decreased with increasing stress intensity in absolute terms. However, in relative terms, increasing stress had a stronger negative effect on low-diversity communities. This shows that more diverse biotic communities are functionally less susceptible to environmental stress, emphasises the need to maintain high levels of biodiversity as an insurance against impacts of changing environmental conditions and sets the stage for exploring the mechanisms underlying biodiversity effects in stressed ecosystems.


Assuntos
Biodiversidade , Meio Ambiente , Microalgas/fisiologia , Clorófitas/crescimento & desenvolvimento , Clorófitas/fisiologia , Ecossistema , Temperatura Alta , Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Salinidade , Estresse Fisiológico
11.
Elife ; 112022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35686734

RESUMO

The vacuole has a space-filling function, allowing a particularly rapid plant cell expansion with very little increase in cytosolic content (Löfke et al., 2015; Scheuring et al., 2016; Dünser et al., 2019). Despite its importance for cell size determination in plants, very little is known about the mechanisms that define vacuolar size. Here, we show that the cellular and vacuolar size expansions are coordinated. By developing a pharmacological tool, we enabled the investigation of membrane delivery to the vacuole during cellular expansion. Our data reveal that endocytic membrane sorting from the plasma membrane to the vacuole is enhanced in the course of rapid root cell expansion. While this 'compromise' mechanism may theoretically at first decelerate cell surface enlargements, it fuels vacuolar expansion and, thereby, ensures the coordinated augmentation of vacuolar occupancy in dynamically expanding plant cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Transporte Proteico , Vacúolos/metabolismo
12.
Biochem J ; 413(1): 115-24, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18402553

RESUMO

PtdIns is an important precursor for inositol-containing lipids, including polyphosphoinositides, which have multiple essential functions in eukaryotic cells. It was previously proposed that different regulatory functions of inositol-containing lipids may be performed by independent lipid pools; however, it remains unclear how such subcellular pools are established and maintained. In the present paper, a previously uncharacterized Arabidopsis gene product with similarity to the known Arabidopsis PIS (PtdIns synthase), PIS1, is shown to be an active enzyme, PIS2, capable of producing PtdIns in vitro. PIS1 and PIS2 diverged slightly in substrate preferences for CDP-DAG [cytidinediphospho-DAG (diacylglycerol)] species differing in fatty acid composition, PIS2 preferring unsaturated substrates in vitro. Transient expression of fluorescently tagged PIS1 or PIS2 in onion epidermal cells indicates localization of both enzymes in the ER (endoplasmic reticulum) and, possibly, Golgi, as was reported previously for fungal and mammalian homologues. Constitutive ectopic overexpression of PIS1 or PIS2 in Arabidopsis plants resulted in elevated levels of PtdIns in leaves. PIS2-overexpressors additionally exhibited significantly elevated levels of PtdIns(4)P and PtdIns(4,5)P(2), whereas polyphosphoinositides were not elevated in plants overexpressing PIS1. In contrast, PIS1-overexpressors contained significantly elevated levels of DAG and PtdEtn (phosphatidylethanolamine), an effect not observed in plants overexpressing PIS2. Biochemical analysis of transgenic plants with regards to fatty acids associated with relevant lipids indicates that lipids increasing with PIS1 overexpression were enriched in saturated or monounsaturated fatty acids, whereas lipids increasing with PIS2 overexpression, including polyphosphoinositides, contained more unsaturated fatty acids. The results indicate that PtdIns populations originating from different PIS isoforms may enter alternative routes of metabolic conversion, possibly based on specificity and immediate metabolic context of the biosynthetic enzymes.


Assuntos
Arabidopsis/enzimologia , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Fosfatidilinositóis/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/química , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Isoenzimas , Dados de Sequência Molecular , Plantas Geneticamente Modificadas
13.
PLoS One ; 13(5): e0197185, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29847550

RESUMO

Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a "peripheral infrastructure" around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies.


Assuntos
Clonagem Molecular/métodos , Engenharia Genética/métodos , Vetores Genéticos/química , Nicotiana/genética , Proteínas de Plantas/genética , Plasmídeos/química , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Calmodulina/genética , Calmodulina/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Vetores Genéticos/metabolismo , Fases de Leitura Aberta , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
14.
Methods Mol Biol ; 1242: 83-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25408446

RESUMO

Commercially available fluorescent dyes enable the fast and specific visualization of plant vacuoles, allowing for investigation of membrane dynamics and vacuolar biogenesis in living cells. Here, we describe different approaches tinting the tonoplast or the vacuolar lumen with a range of dyes, and illustrate its utilization with established fluorescent-tagged marker lines.


Assuntos
Arabidopsis/citologia , Corantes Fluorescentes/química , Células Vegetais/química , Coloração e Rotulagem/métodos , Vacúolos/química , Arabidopsis/química , Rastreamento de Células/métodos , Fluoresceínas/química , Compostos de Piridínio/química , Compostos de Amônio Quaternário/química
15.
Elife ; 42015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25742605

RESUMO

The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates.


Assuntos
Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas SNARE/metabolismo , Vacúolos/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Tamanho Celular/efeitos dos fármacos , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Immunoblotting , Ácidos Indolacéticos/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas SNARE/genética , Vacúolos/efeitos dos fármacos
16.
Mech Dev ; 130(1): 82-94, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22425600

RESUMO

Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment. The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.


Assuntos
Comunicação Celular , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal/genética , Processamento de Proteína Pós-Traducional , Comunicação Celular/genética , Comunicação Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Fosforilação , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Ubiquitinação/genética , Rede trans-Golgi/genética , Rede trans-Golgi/fisiologia
17.
Curr Biol ; 22(14): 1326-32, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22683261

RESUMO

The dynamic spatial and temporal distribution of the crucial plant signaling molecule auxin is achieved by feedback coordination of auxin signaling and intercellular auxin transport pathways. Developmental roles of auxin have been attributed predominantly to its effect on transcription; however, an alternative pathway involving AUXIN BINDING PROTEIN1 (ABP1) has been proposed to regulate clathrin-mediated endocytosis in roots and Rho-like GTPase (ROP)-dependent pavement cell interdigitation in leaves. In this study, we show that ROP6 and its downstream effector RIC1 regulate clathrin association with the plasma membrane for clathrin-mediated endocytosis, as well as for its feedback regulation by auxin. Genetic analysis revealed that ROP6/RIC1 acts downstream of ABP1 to regulate endocytosis. This signaling circuit is also involved in the feedback regulation of PIN-FORMED 1 (PIN1) and PIN2 auxin transporters activity (via its constitutive endocytosis) and corresponding auxin transport-mediated processes, including root gravitropism and leave vascular tissue patterning. Our findings suggest that the signaling module auxin-ABP1-ROP6/RIC1-clathrin-PIN1/PIN2 is a shared component of the feedback regulation of auxin transport during both root and aerial development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Clatrina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/crescimento & desenvolvimento , Brefeldina A/metabolismo , Membrana Celular/metabolismo , Endocitose , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais
18.
Dev Cell ; 20(6): 855-66, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21664582

RESUMO

The phytohormone auxin is an important determinant of plant development. Directional auxin flow within tissues depends on polar localization of PIN auxin transporters. To explore regulation of PIN-mediated auxin transport, we screened for suppressors of PIN1 overexpression (supo) and identified an inositol polyphosphate 1-phosphatase mutant (supo1), with elevated inositol trisphosphate (InsP(3)) and cytosolic Ca(2+) levels. Pharmacological and genetic increases in InsP(3) or Ca(2+) levels also suppressed the PIN1 gain-of-function phenotypes and caused defects in basal PIN localization, auxin transport and auxin-mediated development. In contrast, the reductions in InsP(3) levels and Ca(2+) signaling antagonized the effects of the supo1 mutation and disrupted preferentially apical PIN localization. InsP(3) and Ca(2+) are evolutionarily conserved second messengers involved in various cellular functions, particularly stress responses. Our findings implicate them as modifiers of cell polarity and polar auxin transport, and highlight a potential integration point through which Ca(2+) signaling-related stimuli could influence auxin-mediated development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Polaridade Celular , Ácidos Indolacéticos/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Western Blotting , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Mutantes/metabolismo , Monoéster Fosfórico Hidrolases , Transdução de Sinais
19.
Mol Plant ; 3(5): 870-81, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20603382

RESUMO

The Arabidopsis phosphoinositide kinases PI4Kß1 and PIP5K5 have been implicated in the control of directional vesicle trafficking underlying polar tip growth in pollen tubes. PI4Kß1 and PIP5K5 catalyze key consecutive steps of phosphoinositide conversion, and it appears obvious that phosphatidylinositol-4-phosphate formed by PI4Kß1 might act as a substrate for phosphatidylinositol-4,5-bisphosphate formation by PIP5K5. However, this hypothesis has not been experimentally addressed and distinct localization patterns of PI4Kß1, PIP5K5, and also PI-synthases (PIS) generating phosphatidylinositol suggest additional complexity. Here, the synergistic functionality of enzymes of phosphoinositide conversion was assessed. In tobacco and Arabidopsis pollen tubes, phosphoinositides influence the apical secretion of pectin, and increased pectin deposition results in characteristic morphological alterations. Catalytically active and dominant negative variants of PI4Kß1 and PIP5K5 were systematically co-expressed in tobacco pollen tubes and the incidence of morphologies related to enhanced pectin secretion was evaluated. The data support a proposed functional interplay of PI4Kß1 and PIP5K5 at the trans-Golgi network, mediating directional vesicle trafficking. Co-expression experiments additionally including PIS isoforms, PIS1 or PIS2, indicate that pectin secretion is synergistically mediated by PI4Kß1 and PIP5K5 acting on PtdIns formed by PIS2 rather than PIS1. Possible ramifications for the preferential channeling of phosphoinositide intermediates between particular isoforms of PI pathway enzymes are discussed.


Assuntos
Nicotiana/enzimologia , Nicotiana/metabolismo , Pectinas/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/enzimologia , Tubo Polínico/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tubo Polínico/genética , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA