Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 20(1): 40, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875960

RESUMO

BACKGROUND: The understanding of inhaled particle respiratory tract deposition is a key link to understand the health effects of particles or the efficiency for medical drug delivery via the lung. However, there are few experimental data on particle respiratory tract deposition, and the existing data deviates considerably when comparing results for particles > 1 µm. METHODS: We designed an experimental set-up to measure deposition in the respiratory tract for particles > 1 µm, more specifically 2.3 µm, with careful consideration to minimise foreseen errors. We measured the deposition in seventeen healthy adults (21-68 years). The measurements were performed at tidal breathing, during three consecutive 5-minute periods while logging breathing patterns. Pulmonary function tests were performed, including the new airspace dimension assessment (AiDA) method measuring distal lung airspace radius (rAiDA). The lung characteristics and breathing variables were used in statistical models to investigate to what extent they can explain individual variations in measured deposited particle fraction. The measured particle deposition was compared to values predicted with whole lung models. Model calculations were made for each subject using measured variables as input (e.g., breathing pattern and functional residual capacity). RESULTS: The measured fractional deposition for 2.3 µm particles was 0.60 ± 0.14, which is significantly higher than predicted by any of the models tested, ranging from 0.37 ± 0.08 to 0.53 ± 0.09. The multiple-path particle dosimetry (MPPD) model most closely predicted the measured deposition when using the new PNNL lung model. The individual variability in measured particle deposition was best explained by breathing pattern and distal airspace radius (rAiDA) at half inflation from AiDA. All models underestimated inter-subject variability even though the individual breathing pattern and functional residual capacity for each participant was used in the model. CONCLUSIONS: Whole lung models need to be tuned and improved to predict the respiratory tract particle deposition of micron-sized particles, and to capture individual variations - a variation that is known to be higher for aged and diseased lungs. Further, the results support the hypothesis that the AiDA method measures dimensions in the peripheral lung and that rAiDA, as measured by the AiDA, can be used to better understand the individual variation in the dose to healthy and diseased lungs.


Assuntos
Pulmão , Respiração , Adulto , Humanos , Idoso , Tamanho da Partícula , Testes de Função Respiratória , Exposição por Inalação/efeitos adversos , Aerossóis
2.
Clin Infect Dis ; 75(1): e50-e56, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35271734

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) transmission via exhaled aerosol particles has been considered an important route for the spread of infection, especially during super-spreading events involving loud talking or singing. However, no study has previously linked measurements of viral aerosol emissions to transmission rates. METHODS: During February-March 2021, COVID-19 cases that were close to symptom onset were visited with a mobile laboratory for collection of exhaled aerosol particles during breathing, talking, and singing, respectively, and of nasopharyngeal and saliva samples. Aerosol samples were collected using a BioSpot-VIVAS and a NIOSH bc-251 2-stage cyclone, and all samples were analyzed by RT-qPCR for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detection. We compared transmission rates between households with aerosol-positive and aerosol-negative index cases. RESULTS: SARS-CoV-2 RNA was detected in at least 1 aerosol sample from 19 of 38 (50%) included cases. The odds ratio (OR) of finding positive aerosol samples decreased with each day from symptom onset (OR 0.55, 95 confidence interval [CI] .30-1.0, P = .049). The highest number of positive aerosol samples were from singing, 16 (42%), followed by talking, 11 (30%), and the least from breathing, 3 (8%). Index cases were identified for 13 households with 31 exposed contacts. Higher transmission rates were observed in households with aerosol-positive index cases, 10/16 infected (63%), compared to households with aerosol-negative index cases, 4/15 infected (27%) (χ2 test, P = .045). CONCLUSIONS: COVID-19 cases were more likely to exhale SARS-CoV-2-containing aerosol particles close to symptom onset and during singing or talking as compared to breathing. This study supports that individuals with SARS-CoV-2 in exhaled aerosols are more likely to transmit COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Características da Família , Humanos , RNA Viral , Aerossóis e Gotículas Respiratórios
3.
Clin Infect Dis ; 75(1): e89-e96, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35226740

RESUMO

BACKGROUND: Transmission of coronavirus disease 2019 (COVID-19) can occur through inhalation of fine droplets or aerosols containing infectious virus. The objective of this study was to identify situations, patient characteristics, environmental parameters, and aerosol-generating procedures (AGPs) associated with airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. METHODS: Air samples were collected near hospitalized COVID-19 patients and analyzed by RT-qPCR. Results were related to distance to the patient, most recent patient diagnostic PCR cycle threshold (Ct) value, room ventilation, and ongoing potential AGPs. RESULTS: In total, 310 air samples were collected; of these, 26 (8%) were positive for SARS-CoV-2. Of the 231 samples from patient rooms, 22 (10%) were positive for SARS-CoV-2. Positive air samples were associated with a low patient Ct value (OR, 5.0 for Ct <25 vs >25; P = .01; 95% CI: 1.18-29.5) and a shorter physical distance to the patient (OR, 2.0 for every meter closer to the patient; P = .05; 95% CI: 1.0-3.8). A mobile HEPA-filtration unit in the room decreased the proportion of positive samples (OR, .3; P = .02; 95% CI: .12-.98). No association was observed between SARS-CoV-2-positive air samples and mechanical ventilation, high-flow nasal cannula, nebulizer treatment, or noninvasive ventilation. An association was found with positive expiratory pressure training (P < .01) and a trend towards an association for airway manipulation, including bronchoscopies and in- and extubations. CONCLUSIONS: Our results show that major risk factors for airborne SARS-CoV-2 include short physical distance, high patient viral load, and poor room ventilation. AGPs, as traditionally defined, seem to be of secondary importance.


Assuntos
COVID-19 , SARS-CoV-2 , Hospitais , Humanos , Distanciamento Físico , Aerossóis e Gotículas Respiratórios , Carga Viral
4.
Part Fibre Toxicol ; 19(1): 61, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109745

RESUMO

BACKGROUND: Exposure to air pollutants is one of the major environmental health risks faced by populations globally. Information about inhaled particle deposition dose is crucial in establishing the dose-response function for assessing health-related effects due to exposure to air pollution. OBJECTIVE: This study aims to quantify the respiratory tract deposition (RTD) of equivalent black carbon (BC) particles in healthy young adults during a real-world commuting scenario, analyze factors affecting RTD of BC, and provide key parameters for the assessment of RTD. METHODS: A novel in situ method was applied to experimentally determine the RTD of BC particles among subjects in the highly polluted megacity of Metro Manila, Philippines. Exposure measurements were made for 40 volunteers during public transport and walking. RESULTS: The observed BC exposure concentration was up to 17-times higher than in developed regions. The deposition dose rate (DDR) of BC was up to 3 times higher during commute inside a public transport compared to walking (11.6 versus 4.4 µg hr-1, respectively). This is twice higher than reported in similar studies. The average BC mass deposition fraction (DF) was found to be 43 ± 16%, which can in large be described by individual factors and does not depend on gender. CONCLUSIONS: Commuting by open-sided public transport, commonly used in developing regions, poses a significant health risk due to acquiring extremely high doses of carcinogenic traffic-related pollutants. There is an urgent need to drastically update air pollution mitigation strategies for reduction of dangerously high emissions of BC in urban setting in developing regions. The presented mobile measurement set-up to determine respiratory tract deposition dose is a practical and cost-effective tool that can be used to investigate respiratory deposition in challenging environments.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Carbono , Humanos , Filipinas , Sistema Respiratório , Fuligem/análise , Fuligem/toxicidade , Meios de Transporte , Emissões de Veículos/análise , Emissões de Veículos/toxicidade , Adulto Jovem
5.
Part Fibre Toxicol ; 19(1): 9, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073958

RESUMO

BACKGROUND: Diesel engine exhaust causes adverse health effects. Meanwhile, the impact of renewable diesel exhaust, such as hydrotreated vegetable oil (HVO), on human health is less known. Nineteen healthy volunteers were exposed to HVO exhaust for 3 h in a chamber with a double-blind, randomized setup. Exposure scenarios comprised of HVO exhaust from two modern non-road vehicles with 1) no aftertreatment system ('HVOPM+NOx' PM1: 93 µg m-3, EC: 54 µg m-3, NO: 3.4 ppm, NO2: 0.6 ppm), 2) an aftertreatment system containing a diesel oxidation catalyst and a diesel particulate filter ('HVONOx' PM1: ~ 1 µg m-3, NO: 2.0 ppm, NO2: 0.7 ppm) and 3) filtered air (FA) as control. The exposure concentrations were in line with current EU occupational exposure limits (OELs) of NO, NO2, formaldehyde, polycyclic aromatic hydrocarbons (PAHs), and the future OEL (2023) of elemental carbon (EC). The effect on nasal patency, pulmonary function, and self-rated symptoms were assessed. Calculated predicted lung deposition of HVO exhaust particles was compared to data from an earlier diesel exhaust study. RESULTS: The average total respiratory tract deposition of PM1 during HVOPM+NOx was 27 µg h-1. The estimated deposition fraction of HVO PM1 was 40-50% higher compared to diesel exhaust PM1 from an older vehicle (earlier study), due to smaller particle sizes of the HVOPM+NOx exhaust. Compared to FA, exposure to HVOPM+NOx and HVONOx caused higher incidence of self-reported symptoms (78%, 63%, respectively, vs. 28% for FA, p < 0.03). Especially, exposure to HVOPM+NOx showed 40-50% higher eye and throat irritation symptoms. Compared to FA, a decrement in nasal patency was found for the HVONOx exposures (- 18.1, 95% CI: - 27.3 to - 8.8 L min-1, p < 0.001), and for the HVOPM+NOx (- 7.4 (- 15.6 to 0.8) L min-1, p = 0.08). Overall, no clinically significant change was indicated in the pulmonary function tests (spirometry, peak expiratory flow, forced oscillation technique). CONCLUSION: Short-term exposure to HVO exhaust concentrations corresponding to EU OELs for one workday did not cause adverse pulmonary function changes in healthy subjects. However, an increase in self-rated mild irritation symptoms, and mild decrease in nasal patency after both HVO exposures, may indicate irritative effects from exposure to HVO exhaust from modern non-road vehicles, with and without aftertreatment systems.


Assuntos
Óleos de Plantas , Emissões de Veículos , Voluntários Saudáveis , Humanos , Pulmão , Material Particulado/toxicidade , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
6.
Int Arch Occup Environ Health ; 95(6): 1255-1265, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35066624

RESUMO

PURPOSE: Air monitoring has been the accepted exposure assessment of toxic metals from, e.g., welding, but a method characterizing the actual dose delivered to the lungs would be preferable. Sampling of particles in exhaled breath can be used for the biomonitoring of both endogenous biomarkers and markers of exposure. We have explored a new method for the sampling of metals in exhaled breath from the small airways in a study on welders. METHODS: Our method for particle sampling, Particles in Exhaled Air (PExA®), is based on particle counting and inertial impaction. We applied it on 19 stainless steel welders before and after a workday. In parallel, air monitoring of chromium, manganese and nickel was performed as well as blood sampling after work. RESULTS: Despite substantial exposure to welding fumes, we were unable to show any significant change in the metal content of exhaled particles after, compared with before, exposure. However, the significance might be obscured by a substantial analytical background noise, due to metal background in the sampling media and possible contamination during sampling, as an increase in the median metal contents were indicated. CONCLUSIONS: If efforts to reduce background and contamination are successful, the PExA® method could be an important tool in the investigations of metals in exhaled breath, as the method collects particles from the small airways in contrast to other methods. In this paper, we discuss the discrepancy between our findings and results from studies, using the exhaled breath condensate (EBC) methodology.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Poluentes Ocupacionais do Ar/análise , Biomarcadores/análise , Expiração , Humanos , Ferreiros , Metais/análise , Exposição Ocupacional/análise , Soldagem/métodos
7.
Thorax ; 76(10): 1040-1043, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33859054

RESUMO

Airspace dimension assessment with nanoparticles (AiDA) is a novel method to measure distal airspace radius non-invasively. In this study, AiDA radii were measured in 618 individuals from the population-based Swedish CArdiopulmonary BioImaging Study, SCAPIS. Subjects with emphysema detected by computed tomography were compared to non-emphysematous subjects. The 47 individuals with mainly mild-to-moderate visually detected emphysema had significantly larger AiDA radii, compared with non-emphysematous subjects (326±48 µm vs 291±36 µm); OR for emphysema per 10 µm: 1.22 (1.13-1.30, p<0.0001). Emphysema according to CT densitometry was similarly associated with larger radii compared with non-emphysematous CT examinations (316±41 µm vs 291 µm±26 µm); OR per 10 µm: 1.16 (1.08-1.24, p<0.0001). The results are in line with comparable studies. The results show that AiDA is a potential biomarker for emphysema in individuals in the general population.


Assuntos
Enfisema , Nanopartículas , Enfisema Pulmonar , Biomarcadores , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X
8.
Clin Infect Dis ; 70(10): 2023-2028, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31257413

RESUMO

BACKGROUND: Noroviruses are the major cause of viral gastroenteritis. Disease transmission is difficult to prevent and outbreaks in health-care facilities commonly occur. Contact with infected persons and contaminated environments are believed to be the main routes of transmission. However, noroviruses have recently been found in aerosols and airborne transmission has been suggested. The aim of our study was to investigate associations between symptoms of gastroenteritis and the presence of airborne norovirus, and to investigate the size of norovirus-carrying particles. METHODS: Air sampling was repeatedly performed close to 26 patients with norovirus infections. Samples were analyzed for norovirus RNA by reverse transcription quantitative polymerase chain reaction. The times since each patient's last episodes of vomiting and diarrhea were recorded. Size-separating aerosol particle collection was performed. RESULTS: Norovirus RNA was found in 21 (24%) of 86 air samples from 10 different patients. Only air samples during outbreaks, or before a succeeding outbreak, tested positive for norovirus RNA. Airborne norovirus RNA was also strongly associated with a shorter time period since the last vomiting episode (odds ratio 8.1; P = .04 within 3 hours since the last vomiting episode). The concentrations of airborne norovirus ranged from 5-215 copies/m3, and detectable amounts of norovirus RNA were found in particles <0.95 µm and >4.51 µm. CONCLUSIONS: The results suggest that recent vomiting is the major source of airborne norovirus and imply a connection between airborne norovirus and outbreaks. The presence of norovirus RNA in submicrometre particles indicates that airborne transmission can be an important transmission route.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Infecções por Caliciviridae/epidemiologia , Surtos de Doenças , Gastroenterite/epidemiologia , Hospitais , Humanos , Norovirus/genética
10.
Environ Sci Technol ; 52(21): 12792-12800, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30264993

RESUMO

Phthalates are ubiquitous in indoor environments, which raises concern about their endocrine-disrupting properties. However, studies of human uptake from airborne exposure are limited. We studied the inhalation uptake and dermal uptake by air-to-skin transfer with clean clothing as a barrier of two deuterium-labeled airborne phthalates: particle-phase D4-DEHP (di(2-ethylhexyl)phthalate) and gas-phase D4-DEP (diethyl phthalate). Sixteen participants, wearing trousers and long-sleeved shirts, were under controlled conditions exposed to airborne phthalates in four exposure scenarios: dermal uptake alone and combined inhalation + dermal uptake of both phthalates. The results showed an average uptake of D4-DEHP by inhalation of 0.0014 ± 0.00088 (µg kg-1 bw)/(µg m-3)/h. No dermal uptake of D4-DEHP was observed during the 3 h exposure with clean clothing. The deposited dose of D4-DEHP accounted for 26% of the total inhaled D4-DEHP mass. For D4-DEP, the average uptake by inhalation + dermal was 0.0067 ± 0.0045 and 0.00073 ± 0.00051 (µg kg-1 bw)/(µg m-3)/h for dermal uptake. Urinary excretion factors of metabolites after inhalation were estimated to 0.69 for D4-DEHP and 0.50 for D4-DEP. Under the described settings, the main uptake of both phthalates was through inhalation. The results demonstrate the differences in uptake of gas and particles and highlight the importance of considering the deposited dose in particle uptake studies.


Assuntos
Ácidos Ftálicos , Transporte Biológico , Humanos , Projetos de Pesquisa , Pele , Absorção Cutânea
11.
BMC Pulm Med ; 18(1): 129, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081885

RESUMO

BACKGROUND: Respiratory tract deposition of airborne particles is a key link to understand their health impact. Experimental data are limited for vulnerable groups such as individuals with respiratory diseases. The aim of this study is to investigate the differences in lung deposition of nanoparticles in the distal lung for healthy subjects and subjects with respiratory disease. METHODS: Lung deposition of nanoparticles (50 and 100 nm) was measured after a 10 s breath-hold for three groups: healthy never-smoking subjects (n = 17), asymptomatic (active and former) smokers (n = 15) and subjects with chronic obstructive pulmonary disease (n = 16). Measurements were made at 1300 mL and 1800 mL volumetric lung depth. Each subject also underwent conventional lung function tests, including post bronchodilator FEV1, VC, and diffusing capacity for carbon monoxide, DL,CO. Patients with previously diagnosed respiratory disease underwent a CT-scan of the lungs. Particle lung deposition fraction, was compared between the groups and with conventional lung function tests. RESULTS: We found that the deposition fraction was significantly lower for subjects with emphysema compared to the other subjects (p = 0.001-0.01), but no significant differences were found between healthy never-smokers and smokers. Furthermore, the particle deposition correlated with pulmonary function tests, FEV1%Pred (p < 0.05), FEV1/VC%Pred (p < 0.01) and DL,CO (p < 0.0005) when all subjects were included. Furthermore, for subjects with emphysema, deposition fraction correlated strongly with DL,CO (Pearson's r = 0.80-0.85, p < 0.002) while this correlation was not found within the other groups. CONCLUSIONS: Lower deposition fraction was observed for emphysematous subjects and this can be explained by enlarged distal airspaces in the lungs. As expected, deposition increases for smaller particles and deeper inhalation. The observed results have implications for exposure assessment of air pollution and dosimetry of aerosol-based drug delivery of nanoparticles.


Assuntos
Nanopartículas/análise , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/fisiopatologia , Fumar/fisiopatologia , Aerossóis , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Exposição por Inalação , Masculino , Pessoa de Meia-Idade , Nanopartículas/administração & dosagem , Testes de Função Respiratória , Suécia , Distribuição Tecidual
12.
Environ Sci Technol ; 51(19): 11224-11234, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28836763

RESUMO

The study of airborne bacteria relies on a sampling strategy that preserves their integrity and in situ physiological state, e.g. viability, cultivability, metabolic activity, and ice-nucleation activity. Because ambient air harbors low concentrations of bacteria, an effective bioaerosol sampler should have a high sampling efficiency and a high airflow. We characterize a high-flow-rate impinger with respect to particle collection and retention efficiencies in the range 0.5-3.0 µm, and we investigated its ability to preserve the physiological state of selected bacterial species and seawater bacterial community in comparison with four commercial bioaerosol samplers. The collection efficiency increased with particle size and the cutoff diameter was between 0.5 and 1 µm. During sampling periods of 120-300 min, the impinger retained the cultivability, metabolic activity, viability, and ice-nucleation activity of investigated bacteria. Field studies in semiurban, high-altitude, and polar environments included periods of low bacterial air concentrations, thus demonstrating the benefits of the impinger's high flow rate. In conclusion, the impinger described here has many advantages compared with other bioaerosol samplers currently on the market: a potential for long sampling time, a high flow rate, a high sampling and retention efficiency, low costs, and applicability for diverse downstream microbiological and molecular analyses.


Assuntos
Aerossóis , Bactérias , Gelo , Microbiologia do Ar , Monitoramento Ambiental , Tamanho da Partícula , Manejo de Espécimes
13.
Part Fibre Toxicol ; 14(1): 10, 2017 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-28388961

RESUMO

BACKGROUND: Exposure to airborne particles has a major impact on global health. The probability of these particles to deposit in the respiratory tract during breathing is essential for their toxic effects. Observations have shown that there is a substantial variability in deposition between subjects, not only due to respiratory diseases, but also among individuals with healthy lungs. The factors determining this variability are, however, not fully understood. METHOD: In this study we experimentally investigate factors that determine individual differences in the respiratory tract depositions of inhaled particles for healthy subjects at relaxed breathing. The study covers particles of diameters 15-5000 nm and includes 67 subjects aged 7-70 years. A comprehensive examination of lung function was performed for all subjects. Principal component analyses and multiple regression analyses were used to explore the relationships between subject characteristics and particle deposition. RESULTS: A large individual variability in respiratory tract deposition efficiency was found. Individuals with high deposition of a certain particle size generally had high deposition for all particles <3500 nm. The individual variability was explained by two factors: breathing pattern, and lung structural and functional properties. The most important predictors were found to be breathing frequency and anatomical airway dead space. We also present a linear regression model describing the deposition based on four variables: tidal volume, breathing frequency, anatomical dead space and resistance of the respiratory system (the latter measured with impulse oscillometry). CONCLUSIONS: To understand why some individuals are more susceptible to airborne particles we must understand, and take into account, the individual variability in the probability of particles to deposit in the respiratory tract by considering not only breathing patterns but also adequate measures of relevant structural and functional properties.


Assuntos
Poluentes Atmosféricos/farmacocinética , Exposição por Inalação/análise , Pulmão/efeitos dos fármacos , Material Particulado/farmacocinética , Respiração/efeitos dos fármacos , Adulto , Idoso , Poluentes Atmosféricos/toxicidade , Variação Biológica Individual , Criança , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Material Particulado/toxicidade , Análise de Componente Principal , Testes de Função Respiratória , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Distribuição Tecidual , Adulto Jovem
14.
Int Arch Occup Environ Health ; 90(5): 451-463, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28258373

RESUMO

PURPOSE: Welders are exposed to airborne particles from the welding environment and often develop symptoms work-related from the airways. A large fraction of the particles from welding are in the nano-size range. In this study we investigate if the welders' airways are affected by exposure to particles derived from gas metal arc welding in mild steel in levels corresponding to a normal welding day. METHOD: In an exposure chamber, 11 welders with and 10 welders without work-related symptoms from the lower airways and 11 non-welders without symptoms, were exposed to welding fumes (1 mg/m3) and to filtered air, respectively, in a double-blind manner. Symptoms from eyes and upper and lower airways and lung function were registered. Blood and nasal lavage (NL) were sampled before, immediately after and the morning after exposure for analysis of markers of oxidative stress. Exhaled breath condensate (EBC) for analysis of leukotriene B4 (LT-B4) was sampled before, during and immediately after exposure. RESULTS: No adverse effects of welding exposure were found regarding symptoms and lung function. However, EBC LT-B4 decreased significantly in all participants after welding exposure compared to filtered air. NL IL-6 increased immediately after exposure in the two non-symptomatic groups and blood neutrophils tended to increase in the symptomatic welder group. The morning after, neutrophils and serum IL-8 had decreased in all three groups after welding exposure. Remarkably, the symptomatic welder group had a tenfold higher level of EBC LT-B4 compared to the two groups without symptoms. CONCLUSION: Despite no clinical adverse effects at welding, changes in inflammatory markers may indicate subclinical effects even at exposure below the present Swedish threshold limit (8 h TWA respirable dust).


Assuntos
Leucotrieno B4/efeitos adversos , Nanopartículas/efeitos adversos , Exposição Ocupacional/efeitos adversos , Soldagem , Adulto , Idoso , Biomarcadores , Método Duplo-Cego , Poeira , Humanos , Interleucina-6/análise , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Lavagem Nasal , Neutrófilos , Testes de Função Respiratória , Inquéritos e Questionários , Suécia
16.
Appl Environ Microbiol ; 82(7): 1978-1991, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801574

RESUMO

Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions.


Assuntos
Poluentes Atmosféricos/química , Microalgas/isolamento & purificação , Ar/análise , Poluentes Atmosféricos/classificação , Poluentes Atmosféricos/isolamento & purificação , Ecossistema , Monitoramento Ambiental , Microalgas/classificação , Microalgas/genética
17.
Environ Sci Technol ; 48(11): 6300-8, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24798545

RESUMO

In urban environments, airborne particles are continuously emitted, followed by atmospheric aging. Also, particles emitted elsewhere, transported by winds, contribute to the urban aerosol. We studied the effective density (mass-mobility relationship) and mixing state with respect to the density of particles in central Copenhagen, in wintertime. The results are related to particle origin, morphology, and aging. Using a differential mobility analyzer-aerosol particle mass analyzer (DMA-APM), we determined that particles in the diameter range of 50-400 nm were of two groups: porous soot aggregates and more dense particles. Both groups were present at each size in varying proportions. Two types of temporal variability in the relative number fraction of the two groups were found: soot correlated with intense traffic in a diel pattern and dense particles increased during episodes with long-range transport from polluted continental areas. The effective density of each group was relatively stable over time, especially of the soot aggregates, which had effective densities similar to those observed in laboratory studies of fresh diesel exhaust emissions. When heated to 300 °C, the soot aggregate volatile mass fraction was ∼10%. For the dense particles, the volatile mass fraction varied from ∼80% to nearly 100%.


Assuntos
Aerossóis/química , Cidades , Material Particulado/química , Emissões de Veículos/análise , Aerossóis/análise , Dinamarca , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise , Fatores de Tempo
18.
Infect Dis (Lond) ; 55(2): 158-163, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36331347

RESUMO

BACKGROUND: SARS-CoV-2 in exhaled aerosols is considered an important contributor to the spread of COVID-19. However, characterizing the size distribution of virus-containing aerosol particles has been challenging as high concentrations of SARS-CoV-2 in exhaled air is mainly present close to symptom onset. We present a case study of a person with COVID-19 who was able to participate in extensive measurements of exhaled aerosols already on the day of symptom onset and then for the following three days. METHODS: Aerosol collection was performed using an eight-stage impactor while the subject was breathing, talking and singing, for 30 min each, once every day. In addition, nasopharyngeal samples, saliva samples, room air samples and information on symptom manifestations were collected every day. Samples were analyzed by RT-qPCR for detection of SARS-CoV-2 RNA. RESULTS: SARS-CoV-2 RNA was detected in seven of the eight particle size fractions, from 0.34 to >8.1 µm, with the highest concentrations found in 0.94-2.8 µm particles. The concentration of SARS-CoV-2 RNA was highest on the day of symptom onset, and declined for each day thereafter. CONCLUSION: Our data showed that 90% of the exhaled SARS-CoV-2 RNA was found in aerosol particles <4.5 µm, indicating the importance of small particles for the transmission of COVID-19 close to symptom onset. These results are important for our understanding of airborne transmission, for developing accurate models and for selecting appropriate mitigation strategies.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , RNA Viral , Aerossóis e Gotículas Respiratórios
19.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37057087

RESUMO

Introduction: Firefighters have increased risk of chronic respiratory disease. Standard clinical techniques used in medical checkups may not detect the earliest microstructural changes in peripheral airways. A new technique called Airspace Dimension Assessment (AiDA) has been shown to enable early detection of emphysema in COPD. This method may be useful in the occupational setting to detect early pulmonary changes and enable prevention. The aim of the present study was to evaluate whether AiDA detects changes in the most peripheral airways of firefighters. Methods: AiDA, measuring the effective airspace radius (r AiDA) and zero-second recovery (R 0), was used as a complement to other standardised lung function measures in 21 male firefighters and 16 age-matched male controls. Results: There were significant differences in r AiDA and R 0 between firefighters (mean±sd r AiDA 0.301±0.024 mm; mean±sd R 0 0.336±0.116 arbitrary units) and controls (mean±sd r AiDA 0.276±0.044 mm; mean±sd R 0 0.5760.168 arbitrary units), p=0.03 and p<0.001, respectively. Higher forced vital capacity was found in firefighters (mean 101% of predicted) than in controls (mean 93% of predicted; p=0.03). No significant differences were found with regard to either the ratio between forced expiratory volume in 1 s and forced vital capacity or forced expiratory volume in 1 s. The majority of firefighters had diffusing capacity of the lung for carbon monoxide, oscillometry and single-breath nitrogen washout values within the normal ranges. Conclusion: AiDA parameters can provide information on early pulmonary peripheral changes that may not be seen with standard techniques used in screening of pulmonary function.

20.
Sci Rep ; 13(1): 21245, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040798

RESUMO

Exhaled SARS-CoV-2-containing aerosols contributed significantly to the rapid and vast spread of covid-19. However, quantitative experimental data on the infectivity of such aerosols is missing. Here, we quantified emission rates of infectious viruses in exhaled aerosol from individuals within their first days after symptom onset from covid-19. Six aerosol samples from three individuals were culturable, of which five were successfully quantified using TCID50. The source strength of the three individuals was highest during singing, when they exhaled 4, 36, or 127 TCID50/s, respectively. Calculations with an indoor air transmission model showed that if an infected individual with this emission rate entered a room, a susceptible person would inhale an infectious dose within 6 to 37 min in a room with normal ventilation. Thus, our data show that exhaled aerosols from a single person can transmit covid-19 to others within minutes at normal indoor conditions.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios , Expiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA