Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 261: 119707, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39084507

RESUMO

Soil salinization poses a significant global challenge, exerting adverse effects on both agriculture and ecosystems. Planting halophytes has the potential ability to improve saline-alkali land and enhance ecosystem multifunctionality (EMF). However, it remains unclear which halophytes are effective in improving saline-alkali land and what impact they have on the rhizosphere microbial communities and EMF. In this study, we evaluated the Na+ absorption capability of five halophytes (Grubovia dasyphylla, Halogeton glomeratus, Suaeda salsa, Bassia scoparia, and Reaumuria songarica) and assessed their rhizosphere microbial communities and EMF. The results showed that S. salsa possessed the highest shoot (3.13 mmol g-1) and root (0.92 mmol g-1) Na+ content, and its soil Na+ absorption, along with B. scoparia, was significantly higher than that of other plants. The soil pH, salinity, and Na+ content of the halophyte rhizospheres decreased by 6.21%, 23.49%, and 64.29%, respectively, when compared to the bulk soil. Extracellular enzymes in the halophyte rhizosphere soil, including α-glucosidase, ß-glucosidase, ß-1,4-N-acetyl-glucosaminidase, neutral phosphatase, and alkaline phosphatase, increased by 70.1%, 78.4%, 38.5%, 79.1%, and 64.9%, respectively. Furthermore, the halophyte rhizosphere exhibited higher network complexity of bacteria and fungi and EMF than bulk soil. The relative abundance of the dominant phyla Proteobacteria, Firmicutes, and Ascomycota in the halophyte rhizosphere soil increased by 9.4%, 8.3%, and 22.25%, respectively, and showed higher microbial network complexity compared to the bulk soil. Additionally, keystone taxa, including Muricauda, Nocardioides, and Pontibacter, were identified with notable effects on EMF. This study confirmed that euhalophytes are the best choice for saline-alkali land restoration. These findings provided a theoretical basis for the sustainable use of saline-alkali cultivated land.


Assuntos
Rizosfera , Salinidade , Plantas Tolerantes a Sal , Microbiologia do Solo , Solo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia , Solo/química , Ecossistema , Microbiota
2.
Sci Total Environ ; 900: 165814, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37517723

RESUMO

The primary utilization strategy for meadow grasslands on the Qinghai-Tibet Plateau (QTP) is livestock grazing. This practice is considered as one of the major drivers of plant-associated bacterial community construction and changes in soil properties. The species of Kobresia humilis is considered as the most dominant one in grasslands. However, how different grazing practices affect the phyllosphere and rhizosphere bacterial communities of K. humilis is unknown. To address this issue, the effects of the grazing enclosure (GE), single-species grazing (YG and SG, representing yak only and sheep only, respectively), and different ratios of grazing (ratio of yak to sheep is 1:2, 1:4, and 1:6, represented by MG1:2, MG1:4, and MG1:6, respectively) on the dominant plant of K. humilis, it's phyllosphere and rhizosphere bacteria, and soil properties were investigated using artificially controlled grazing and grazing enclosure. Our data showed that grazing enclosure enhanced vegetation coverage, and rhizosphere bacterial richness and diversity, while reduced plant number and bacterial network stability of K. humilis. The NO3--N, K+, and Cl- concentrations were lower under grazing compared to GE. SG reduced the concentration of NH4+-N, TN, K+, and Na+ compared to YG. Moderate grazing intensity had a lower relative abundance of the r-strategists (Bacteroidota and Gammaproteobacteria) with higher bacterial network stability. Yak and sheep grazing showed reversed impacts on the bacterial network stability between the phyllosphere and rhizosphere of K. humilis. Proteobacteria and Actinobacteriota were identified in the molecular ecological network analysis as keystone taxa in the phyllosphere and rhizosphere networks, respectively, under all treatments. This study explained why sheep grazing has more adverse effects on grazing-tolerant grass species, K. humilis, than yak grazing, and will contribute to a better understanding of the impacts of different grazing practices and grazing enclosure on alpine grassland ecosystems on the QTP.


Assuntos
Carex (Planta) , Ecossistema , Animais , Ovinos , Pradaria , Rizosfera , Tibet , Bactérias , Solo
3.
PeerJ ; 10: e14512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545382

RESUMO

Apple scab is a serious disease that restricts the growth of cultivated apples. The objective of this study is to investigate the genetic variations and genetic structure of Venturia inaequalis in Gansu Province, China. 108 isolates of the pathogen V. inaequalis from the Jingning, Lingtai, Jingchuan, Xifeng, Ning and Maiji regions were collected, and their genetic diversity was analyzed using AFLP molecular marker technique. The results showed that genetic diversity was present among the isolates but was not statistically significant. Genetic distance values ranged from 0.0095 to 0.0762. Cluster analysis results showed that the 108 isolates could be divided into two clusters using a similarity coefficient of 0.69. A total of 104 isolates were contained in cluster I while four isolates were contained in Cluster II. From the AMOVA analysis, 98% of variations were observed within the same region, while 2% were observed across different regions. The analysis of population structure showed that 108 isolates had two common ancestors, with the Jingning isolates mainly being derived from the red ancestor. PCoA analysis showed that the Jingning isolates were independent to a certain extent. The different geographical location caused the genetic difference of the isolates. The genetic diversity of apple scab in Gansu Province is greatly aided by this work, which also offers a theoretical foundation for the use of molecular markers in assisted breeding to create novel resistant types.


Assuntos
Ascomicetos , Malus , Malus/genética , Ascomicetos/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Melhoramento Vegetal , Variação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA