Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 624(7990): 130-137, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993711

RESUMO

The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.


Assuntos
Regulação do Apetite , Tronco Encefálico , Ingestão de Alimentos , Retroalimentação Fisiológica , Alimentos , Saciação , Estômago , Regulação do Apetite/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Ingestão de Alimentos/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/metabolismo , Hormônio Liberador de Prolactina/metabolismo , Saciação/fisiologia , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Estômago/fisiologia , Paladar/fisiologia , Fatores de Tempo , Animais , Camundongos
2.
Nature ; 608(7922): 374-380, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35831501

RESUMO

Food and water are rewarding in part because they satisfy our internal needs1,2. Dopaminergic neurons in the ventral tegmental area (VTA) are activated by gustatory rewards3-5, but how animals learn to associate these oral cues with the delayed physiological effects of ingestion is unknown. Here we show that individual dopaminergic neurons in the VTA respond to detection of nutrients or water at specific stages of ingestion. A major subset of dopaminergic neurons tracks changes in systemic hydration that occur tens of minutes after thirsty mice drink water, whereas different dopaminergic neurons respond to nutrients in the gastrointestinal tract. We show that information about fluid balance is transmitted to the VTA by a hypothalamic pathway and then re-routed to downstream circuits that track the oral, gastrointestinal and post-absorptive stages of ingestion. To investigate the function of these signals, we used a paradigm in which a fluid's oral and post-absorptive effects can be independently manipulated and temporally separated. We show that mice rapidly learn to prefer one fluid over another based solely on its rehydrating ability and that this post-ingestive learning is prevented if dopaminergic neurons in the VTA are selectively silenced after consumption. These findings reveal that the midbrain dopamine system contains subsystems that track different modalities and stages of ingestion, on timescales from seconds to tens of minutes, and that this information is used to drive learning about the consequences of ingestion.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Hipotálamo , Vias Neurais , Nutrientes , Estado de Hidratação do Organismo , Área Tegmentar Ventral , Animais , Sinais (Psicologia) , Digestão , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Ingestão de Alimentos , Trato Gastrointestinal/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Camundongos , Nutrientes/metabolismo , Estado de Hidratação do Organismo/efeitos dos fármacos , Recompensa , Fatores de Tempo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia , Água/metabolismo , Água/farmacologia , Equilíbrio Hidroeletrolítico
3.
Neuron ; 112(19): 3354-3370.e5, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39153476

RESUMO

The rewarding taste of food is critical for motivating animals to eat, but whether taste has a parallel function in promoting meal termination is not well understood. Here, we show that hunger-promoting agouti-related peptide (AgRP) neurons are rapidly inhibited during each bout of ingestion by a signal linked to the taste of food. Blocking these transient dips in activity via closed-loop optogenetic stimulation increases food intake by selectively delaying the onset of satiety. We show that upstream leptin-receptor-expressing neurons in the dorsomedial hypothalamus (DMHLepR) are tuned to respond to sweet or fatty tastes and exhibit time-locked activation during feeding that is the mirror image of downstream AgRP cells. These findings reveal an unexpected role for taste in the negative feedback control of ingestion. They also reveal a mechanism by which AgRP neurons, which are the primary cells that drive hunger, are able to influence the moment-by-moment dynamics of food consumption.


Assuntos
Proteína Relacionada com Agouti , Comportamento Alimentar , Hipotálamo , Neurônios , Paladar , Animais , Proteína Relacionada com Agouti/metabolismo , Paladar/fisiologia , Hipotálamo/fisiologia , Comportamento Alimentar/fisiologia , Camundongos , Neurônios/fisiologia , Ingestão de Alimentos/fisiologia , Optogenética , Retroalimentação Fisiológica/fisiologia , Fome/fisiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA