Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Elife ; 112022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674316

RESUMO

During threat exposure, survival depends on defensive reactions. Prior works linked large glutamatergic populations in the midbrain periaqueductal gray (PAG) to defensive freezing and flight, and established that the overarching functional organization axis of the PAG is along anatomically-defined columns. Accordingly, broad activation of the dorsolateral column induces flight, while activation of the lateral or ventrolateral (l and vl) columns induces freezing. However, the PAG contains diverse cell types that vary in neurochemistry. How these cell types contribute to defense remains unknown, indicating that targeting sparse, genetically-defined populations may reveal how the PAG generates diverse behaviors. Though prior works showed that broad excitation of the lPAG or vlPAG causes freezing, we found in mice that activation of lateral and ventrolateral PAG (l/vlPAG) cholecystokinin-expressing (CCK) cells selectively caused flight to safer regions within an environment. Furthermore, inhibition of l/vlPAG-CCK cells reduced predator avoidance without altering other defensive behaviors like freezing. Lastly, l/vlPAG-CCK activity decreased when approaching threat and increased during movement to safer locations. These results suggest CCK cells drive threat avoidance states, which are epochs during which mice increase distance from threat and perform evasive escape. Conversely, l/vlPAG pan-neuronal activation promoted freezing, and these cells were activated near threat. Thus, CCK l/vlPAG cells have opposing function and neural activation motifs compared to the broader local ensemble defined solely by columnar boundaries. In addition to the anatomical columnar architecture of the PAG, the molecular identity of PAG cells may confer an additional axis of functional organization, revealing unexplored functional heterogeneity.


Assuntos
Medo , Substância Cinzenta Periaquedutal , Animais , Colecistocinina , Medo/fisiologia , Camundongos , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia
2.
Elife ; 102021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33955356

RESUMO

Animals must balance needs to approach threats for risk assessment and to avoid danger. The dorsal periaqueductal gray (dPAG) controls defensive behaviors, but it is unknown how it represents states associated with threat approach and avoidance. We identified a dPAG threatavoidance ensemble in mice that showed higher activity farther from threats such as the open arms of the elevated plus maze and a predator. These cells were also more active during threat avoidance behaviors such as escape and freezing, even though these behaviors have antagonistic motor output. Conversely, the threat approach ensemble was more active during risk assessment behaviors and near threats. Furthermore, unsupervised methods showed that avoidance/approach states were encoded with shared activity patterns across threats. Lastly, the relative number of cells in each ensemble predicted threat avoidance across mice. Thus, dPAG ensembles dynamically encode threat approach and avoidance states, providing a flexible mechanism to balance risk assessment and danger avoidance.


Assuntos
Aprendizagem da Esquiva , Substância Cinzenta Periaquedutal/fisiologia , Animais , Teste de Labirinto em Cruz Elevado , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Elife ; 102021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468312

RESUMO

Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape vigor from innate and conditioned threats. Cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd) are necessary for initiating escape from innate threats via a projection to the dorsolateral periaqueductal gray (dlPAG). We now show that in mice PMd-cck cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Intriguingly, PMd-cck and dlPAG activity in mice showed higher mutual information during exposure to innate and conditioned threats. In parallel, human functional magnetic resonance imaging data show that a posterior hypothalamic-to-dlPAG pathway increased activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd-dlPAG circuit as a central node, controlling escape vigor elicited by both innate and conditioned threats.


Assuntos
Comportamento Animal , Condicionamento Psicológico , Reação de Fuga , Medo , Hipotálamo Posterior/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Adulto , Animais , Mapeamento Encefálico , Colecistocinina/genética , Colecistocinina/metabolismo , Feminino , Humanos , Hipotálamo Posterior/diagnóstico por imagem , Hipotálamo Posterior/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiologia , Optogenética , Substância Cinzenta Periaquedutal/diagnóstico por imagem , Substância Cinzenta Periaquedutal/metabolismo , Estimulação Luminosa , Ratos Long-Evans , Fatores de Tempo , Gravação em Vídeo , Percepção Visual , Adulto Jovem
4.
Neuron ; 109(11): 1848-1860.e8, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861942

RESUMO

Naturalistic escape requires versatile context-specific flight with rapid evaluation of local geometry to identify and use efficient escape routes. It is unknown how spatial navigation and escape circuits are recruited to produce context-specific flight. Using mice, we show that activity in cholecystokinin-expressing hypothalamic dorsal premammillary nucleus (PMd-cck) cells is sufficient and necessary for context-specific escape that adapts to each environment's layout. In contrast, numerous other nuclei implicated in flight only induced stereotyped panic-related escape. We reasoned the dorsal premammillary nucleus (PMd) can induce context-specific escape because it projects to escape and spatial navigation nuclei. Indeed, activity in PMd-cck projections to thalamic spatial navigation circuits is necessary for context-specific escape induced by moderate threats but not panic-related stereotyped escape caused by perceived asphyxiation. Conversely, the PMd projection to the escape-inducing dorsal periaqueductal gray projection is necessary for all tested escapes. Thus, PMd-cck cells control versatile flight, engaging spatial navigation and escape circuits.


Assuntos
Reação de Fuga , Hipotálamo Posterior/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Navegação Espacial , Tálamo/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA