Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Chem Rev ; 124(16): 9609-9632, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39052522

RESUMO

Recycling mixed polyolefin plastics is a significant challenge due to the limitations in sorting and degraded mechanical properties of blends. Nonreactive compatibilization by adding a small amount of polymeric additive is a widespread approach to restoring the performance and value of recycled plastics. Over the past several decades, synthetic advances have enabled access to low-cost copolymers and precision architectures for deepening the understanding of compatibilization mechanisms in semicrystalline polyolefins. This review covers the design parameters of a polymeric compatibilizer, the testing of blends, the synthetic methods of producing economically viable additives, and surveys the literature of blends of compatibilized HDPE, LLDPE, LDPE, and iPP. From this, readers should gain a comprehension of the polymer mechanics, synthesis, and macromolecular engineering of processable polyolefin blends, along with the field's future directions.

2.
J Am Chem Soc ; 146(26): 18032-18040, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38874569

RESUMO

Herein, we report that (S,S)-prophenolMg2(µ-OnBu)(THF)2 ((S,S)-1, prophenol = (S,S)-2,6-bis[2-(hydroxydiphenylmethyl)pyrrolidin-1-ylmethyl]-4-methylphenol) is a highly enantioselective (kR/kS = 140) precatalyst for ring-opening polymerization of rac-ß-butyrolactone (ß-BL) to isotactic poly(3-hydroxybutyrate) (i-PHB), a high performance, biodegradable polyester. Precatalyst (S,S)-1 polymerizes (R)-ß-BL with an inversion of stereochemistry to (S)-PHB with a m% (percentage of adjacent linkages with a meso configuration) of 98% at 41% conversion and Tm of 165 °C under a variety of conditions. Complex (S,S)-1 demonstrates unique polymerization kinetics, as it does not polymerize the preferred enantiomer, (R)-ß-BL, alone. Mechanistic studies revealed that (S)-ß-BL is needed to convert (S,S)-1 into the active enantioselective polymerization catalyst. To the best of our knowledge, (S,S)-1 produces i-PHB with the highest degree of isotacticity observed from a polymerization of rac-ß-BL. This study informs the design and understanding of future enantioselective and earth-abundant metal catalysts for ring-opening polymerization of ß-lactones.

3.
J Am Chem Soc ; 145(48): 25983-25988, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37976254

RESUMO

Polyhydroxyalkanoates (PHAs), such as poly[(R)-3-hydroxybutyrates] [(R)-P3HB], are produced by bacteria and are promising alternatives to nondegradable polyolefin plastics, but their semicrystallinity and high melting points are only maintained at high tacticity, which are commonly seen in other semicrystalline polymers like isotactic polypropylene (iPP). We herein report a class of synthetic PHAs, cis-poly(3-hydroxy-2-methylbutyrate)s (cis-PHMBs), that exhibit tacticity-independent semicrystallinity. The syndiotactic, isotactic, and even atactic PHMBs all share high melting points (Tm > 170 °C) and nearly identical crystal structures. The isomorphism of these polymers across three different tacticities has allowed access to iPP-like, high-performance PHMB without the requirement of high tacticity.

4.
J Am Chem Soc ; 145(5): 2901-2910, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36696148

RESUMO

C-H/Et-Al exchange in zirconium-catalyzed reactions of saturated hydrocarbons and AlEt3 affords versatile organoaluminum compounds and ethane. The grafting of commercially available Zr(OtBu)4 on silica/alumina gives monopodal ≡SiO-Zr(OtBu)3 surface pre-catalyst sites that are activated in situ by ligand exchange with AlEt3. The catalytic C-H alumination of dodecane at 150 °C followed by quenching in air affords n-dodecanol as the major product, revealing selectivity for methyl group activation. Shorter hydrocarbon or alcohol products were not detected under these conditions. Catalytic reactions of cyclooctane and AlEt3, however, afford ring-opened products, indicating that C-C bond cleavage occurs readily in methyl group-free reactants. This selectivity for methyl group alumination enables the C-H alumination of polyethylenes, polypropylene, polystyrene, and poly-α-olefin oils without significant chain deconstruction. In addition, the smallest hydrocarbon, methane, undergoes selective mono-alumination under solvent-free catalytic conditions, providing a direct route to Al-Me species.

5.
Angew Chem Int Ed Engl ; 62(30): e202301927, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37160647

RESUMO

Polyolefins with periodic unsaturation in the backbone chain are sought after for synthesizing chemically recyclable polymers or telechelic polyolefin macromonomers. Here we introduce a bottom-up synthesis of unsaturated high-density polyethylene (HDPE) via copolymerization of ethylene with dimethyl 7-oxabicyclo[2.2.1]hepta-2,5-diene-3,5-dicarboxylate followed by post-polymerization retro-Diels-Alder to unveil hidden double bonds in the polymer backbone. The incorporation of this "Trojan Horse" comonomer was varied and a series of unsaturated HDPE polymers with block lengths of 1.2, 1.9, and 3.5 kDa between double bonds was synthesized. Cross metathesis of unsaturated HDPE samples with 2-hydroxyethyl acrylate yielded telechelic ester terminated PE macromonomers suitable for the preparation of ester-linked PE. These materials were depolymerized and repolymerized, making them suitable candidates for chemical recycling. The ester-linked PE displayed thermal and mechanical properties comparable to commercial HDPE.

6.
J Am Chem Soc ; 144(28): 12613-12618, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35793702

RESUMO

Polyolefins represent the largest class of commodity materials due to their excellent material properties; however, they have limited pathways to chemical recycling and are often difficult to mechanically recycle. Here we demonstrate a new catalyst for the isoselective copolymerization of propylene and butadiene capable of favoring 1,4-insertion over 1,2-insertion while maintaining good molecular weights and turnover frequencies. This isotactic propylene copolymer with main-chain unsaturation was depolymerized to a telechelic macromonomer using an olefin metathesis catalyst and 2-hydroxyethyl acrylate. After hydrogenation, the telechelic macromonomer was repolymerized to form an ester-linked polypropylene material. This polymer shows thermal and mechanical properties comparable to linear low-density polyethylene. Finally, the telechelic macromonomer could be regenerated through the depolymerization of the ester-linked polypropylene material, which allows for the chemical recycling to macromonomer. This process provides a route to transform partially unsaturated polyolefins to chemically recyclable materials with similar properties to their parent polymers.


Assuntos
Ésteres , Polipropilenos , Peso Molecular , Polimerização , Polímeros/química
7.
J Am Chem Soc ; 144(51): 23280-23285, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524740

RESUMO

Among commercial plastics, polyolefins are the most widely produced worldwide but have limited recyclability. Here, we report a chemical recycling route for the conversion of post-consumer high-density polyethylene (HDPE) into telechelic macromonomers suitable for circular reprocessing. Unsaturation was introduced into HDPE by catalytic dehydrogenation using an Ir-POCOP catalyst without an alkene acceptor. Cross-metathesis with 2-hydroxyethyl acrylate followed by hydrogenation transformed the partially unsaturated HDPE into telechelic macromonomers. The direct repolymerization of the macromonomers gave a brittle material due to the low overall weight-average molecular weight. Aminolysis of telechelic macromonomers with a small amount of diethanolamine increased the overall functionality. The resulting macromonomers were repolymerized through transesterification to generate a polymer with comparable mechanical properties to the starting post-consumer HDPE waste. Depolymerization of the repolymerized material catalyzed by an organic base regenerated the telechelic macromonomers, thereby allowing waste polyethylene materials to enter a chemical recycling pathway.


Assuntos
Plásticos , Polietileno , Polímeros , Resíduos , Catálise
8.
J Am Chem Soc ; 144(12): 5323-5334, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35195400

RESUMO

A catalytic architecture, comprising a mesoporous silica shell surrounding platinum nanoparticles (NPs) supported on a solid silica sphere (mSiO2/Pt-X/SiO2; X is the mean NP diameter), catalyzes hydrogenolysis of melt-phase polyethylene (PE) into a narrow C23-centered distribution of hydrocarbons in high yield using very low Pt loadings (∼10-5 g Pt/g PE). During catalysis, a polymer chain enters a pore and contacts a Pt NP where the C-C bond cleavage occurs and then the smaller fragment exits the pore. mSiO2/Pt/SiO2 resists sintering or leaching of Pt and provides high yields of liquids; however, many structural and chemical effects on catalysis are not yet resolved. Here, we report the effects of Pt NP size on activity and selectivity in PE hydrogenolysis. Time-dependent conversion and yields and a lumped kinetics model based on the competitive adsorption of long vs short chains reveal that the activity of catalytic material is highest with the smallest NPs, consistent with a structure-sensitive reaction. Remarkably, the three mSiO2/Pt-X/SiO2 catalysts give equivalent selectivity. We propose that mesoscale pores in the catalytic architecture template the C23-centered distribution, whereas the active Pt sites influence the carbon-carbon bond cleavage rate. This conclusion provides a framework for catalyst design by separating the C-C bond cleavage activity at catalytic sites from selectivity for chain lengths of the products influenced by the structure of the catalytic architecture. The increased activity, selectivity, efficiency, and lifetime obtained using this architecture highlight the benefits of localized and confined environments for isolated catalytic particles under condensed-phase reaction conditions.


Assuntos
Nanopartículas Metálicas , Platina , Carbono/química , Nanopartículas Metálicas/química , Platina/química , Polienos , Dióxido de Silício/química
9.
J Am Chem Soc ; 141(6): 2474-2480, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30707018

RESUMO

We report the regioselective carbonylation of 2,2-disubstituted epoxides to ß,ß-disubstituted ß-lactones. Mechanistic studies revealed epoxide ring-opening as the turnover limiting step, an insight that facilitated the development of improved reaction conditions using weakly donating, ethereal solvents. A wide range of epoxides can be carbonylated to ß-lactones, which are subsequently ring-opened to produce ketone-based aldol adducts, providing an alternative to the Mukaiyama aldol reaction. Enantiopure epoxides were demonstrated to undergo the carbonylation/ring-opening process with retention of stereochemistry to form enantiopure ß-hydroxy esters.


Assuntos
Compostos de Epóxi/química , Cetonas/química , Estereoisomerismo
10.
J Am Chem Soc ; 141(13): 5107-5111, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30835460

RESUMO

Isosorbide is a rigid, sugar-derived building block that has shown promise in high-performance materials, albeit with a lack of available controlled polymerization methods. To this end, we provide mechanistic insights into the cationic and quasi-zwitterionic ring-opening polymerization (ROP) of an annulated isosorbide derivative (1,4:2,5:3,6-trianhydro-d-mannitol, 5). Ring-opening selectivity of this tricyclic ether was achieved, and the polymerization is selectively directed toward different macromolecular architectures, allowing for formation of either linear or cyclic polymers. Notably, straightforward recycling of unreacted monomer can be accomplished via sublimation. This work provides the first platform for tailored polymer architectures from isosorbide via ROP.

11.
J Am Chem Soc ; 137(47): 15049-54, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26522052

RESUMO

We report an alternative pathway to the Wacker oxidation of internal olefins involving epoxidation of trans-alkenes followed by a mild and highly regioselective isomerization to give the major ketone isomers in 66-98% yield. Preliminary kinetics and isotope labeling studies suggest epoxide ring opening as the turnover limiting step in our proposed mechanism. A similar catalytic system was applied to the kinetic resolution of select trans-epoxides to give synthetically useful selectivity factors of 17-23 for benzyl-substituted substrates.

12.
J Am Chem Soc ; 136(20): 7213-6, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24773453

RESUMO

While traditional polymerization of linear α-olefins (LAOs) typically provides amorphous, low T(g) polymers, chain-straightening polymerization represents a route to semicrystalline materials. A series of α-diimine nickel catalysts were tested for the polymerization of various LAOs. Although known systems yielded amorphous or low-melting polymers, the "sandwich" α-diimines 3-6 yielded semicrystalline "polyethylene" comprised primarily of unbranched repeat units via a combination of uncommon regioselective 2,1-insertion and precision chain-walking events.


Assuntos
Alcenos/química , Alcenos/síntese química , Iminas/química , Níquel/química , Compostos Organometálicos/química , Catálise , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Polimerização
13.
J Am Chem Soc ; 135(50): 18901-11, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24199614

RESUMO

The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands.

14.
Nat Chem ; 15(6): 856-861, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37024718

RESUMO

Polyolefin plastics are widely used due to their low cost and outstanding properties, but their environmental persistence presents a major societal challenge. Polyhydroxyalkanoates (PHA) are biodegradable substitutes for polyolefins, but their high cost and thermal instability are impediments to their widespread application. Here we report a series of methylated polyhydroxybutyrates, poly(3-hydroxy-2-methylbutyrate)s, which are structurally inspired by natural PHAs. The cis homopolymers exhibit tacticity-independent crystallinity, which allows for the discovery of high-melting, thermally stable and mechanically tough copolymers, and a full range of polyolefin-like properties can be further achieved by tailoring the cis/trans ratio of the repeating units. Moreover, these materials can be synthesized from inexpensive carbon monoxide and 2-butene feedstocks, and they can be chemically recycled or upcycled at their end of life. The versatile properties, abundant feedstocks and end-of-life utility of this family of polyesters will enable a powerful platform for the discovery of sustainable alternatives to polyolefin plastics.

16.
ACS Macro Lett ; 9(8): 1161-1166, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35653207

RESUMO

The compatibilization of polyethylene (PE) and isotactic polypropylene (iPP) blends is of particular interest due to the challenges associated with recycling these plastics from mixed waste streams. Polyethylene-graft-iPP copolymers (PE-g-iPP) were prepared using a grafting-through strategy by copolymerization of ethylene with allyl-terminated iPP macromonomers in the presence of a hafnium pyridylamido catalyst. Graft copolymers with a variety of graft lengths (Mn = 6-28 kg/mol), graft numbers, and graft spacings were prepared. These graft copolymers were melt-blended with high-density polyethylene (HDPE) and iPP (iPP/HDPE = 30/70 w/w), and the blend properties were evaluated by tensile testing. The blends showed enhanced tensile strength at 5 and 1 wt % loading, with higher tensile strength observed for larger block numbers and graft lengths. These results indicate that graft copolymers are efficient compatibilizers for blends of HDPE and iPP.

17.
Science ; 370(6515): 437-441, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33093105

RESUMO

The current scale of plastics production and the accompanying waste disposal problems represent a largely untapped opportunity for chemical upcycling. Tandem catalytic conversion by platinum supported on γ-alumina converts various polyethylene grades in high yields (up to 80 weight percent) to low-molecular-weight liquid/wax products, in the absence of added solvent or molecular hydrogen, with little production of light gases. The major components are valuable long-chain alkylaromatics and alkylnaphthenes (average ~C30, dispersity Ð = 1.1). Coupling exothermic hydrogenolysis with endothermic aromatization renders the overall transformation thermodynamically accessible despite the moderate reaction temperature of 280°C. This approach demonstrates how waste polyolefins can be a viable feedstock for the generation of molecular hydrocarbon products.

18.
Chem Commun (Camb) ; 55(53): 7607-7610, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31198915

RESUMO

Design and synthesis of a Ni(ii) "sandwich" α-diimine complex (1) resulted in a switchable catalyst for the living polymerisation of ethylene over a range of temperatures and pressures. Varying these conditions produced a well-defined tetrablock copolymer comprising branched and highly linear polyethylenes. This copolymer improved the toughness of a phase separated LDPE/HDPE blend by nonreactive interfacial compatibilisation.

19.
Chem Commun (Camb) ; 55(48): 6914-6917, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31139794

RESUMO

A dual catalysis system was developed to synthesize hydrolyzable polyether-polyester copolymers from propylene oxide and cyclic esters such as γ-butyrolactone, δ-valerolactone, and ε-caprolactone. A bimetallic chromium catalyst active for the enantioselective polymerisation of propylene oxide and an organocatalyst active for the ring-opening polymerisation of lactones were used in conjunction with an alcohol chain shuttling agent to create new copolymers. The monomer and alcohol ratios were varied to yield a wide range of copolymers with varying monomer ratios, molecular weights, and crystallinities.

20.
ACS Cent Sci ; 5(11): 1795-1803, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31807681

RESUMO

Our civilization relies on synthetic polymers for all aspects of modern life; yet, inefficient recycling and extremely slow environmental degradation of plastics are causing increasing concern about their widespread use. After a single use, many of these materials are currently treated as waste, underutilizing their inherent chemical and energy value. In this study, energy-rich polyethylene (PE) macromolecules are catalytically transformed into value-added products by hydrogenolysis using well-dispersed Pt nanoparticles (NPs) supported on SrTiO3 perovskite nanocuboids by atomic layer deposition. Pt/SrTiO3 completely converts PE (M n = 8000-158,000 Da) or a single-use plastic bag (M n = 31,000 Da) into high-quality liquid products, such as lubricants and waxes, characterized by a narrow distribution of oligomeric chains, at 170 psi H2 and 300 °C under solvent-free conditions for reaction durations up to 96 h. The binding of PE onto the catalyst surface contributes to the number averaged molecular weight (M n) and the narrow polydispersity (D) of the final liquid product. Solid-state nuclear magnetic resonance of 13C-enriched PE adsorption studies and density functional theory computations suggest that PE adsorption is more favorable on Pt sites than that on the SrTiO3 support. Smaller Pt NPs with higher concentrations of undercoordinated Pt sites over-hydrogenolyzed PE to undesired light hydrocarbons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA