RESUMO
Nontypeable Haemophilus influenzae (NTHi) is a pathogen known for being a frequent cause of acute otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. In the present study, a vaccine antigen based on the fusion of two known NTHi adhesive proteins, protein E (PE) and a pilin subunit (PilA), was developed. The quality of the combined antigen was investigated through functional, biophysical, and structural analyses. It was shown that the PE and PilA individual structures are not modified in the PE-PilA fusion and that PE-PilA assembles as a dimer in solution, reflecting PE dimerization. PE-PilA was found to bind vitronectin by enzyme-linked immunosorbent assay, as isolated PE does. Disulfide bridges were conserved and homogeneous, which was determined by peptide mapping and top-down analysis of PE, PilA, and PE-PilA molecules. Finally, the PE-PilA crystal showed a PE entity with a three-dimensional (3D) structure similar to that of the recently published isolated PE, while the structure of the PilA entity was similar to that of a 3D model elaborated from two other type 4 pilin subunits. Taken together, our observations suggest that the two tethered proteins behave independently within the chimeric molecule and display structures similar to those of the respective isolated antigens, which are important characteristics for eliciting optimal antibody-mediated immunity. PE and PilA can thus be further developed as a single fusion protein in a vaccine perspective, in the knowledge that tethering the two antigens does not perceptibly compromise the structural attributes offered by the individual antigens.
Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Fímbrias/imunologia , Vacinas Anti-Haemophilus/imunologia , Proteínas de Bactérias/química , Cristalização , Proteínas de Fímbrias/química , Dobramento de Proteína , Vacinas Sintéticas/imunologiaRESUMO
Restricted to the genus Streptococcus, the Pht protein family comprises four members: PhtA, PhtB, PhtD and PhtE. This family has the potential to provide a protein candidate for incorporation in pneumococcal vaccines. Based on sequence analysis and on RT-PCR experiments, we show here that the pht genes are organized in tandem but that their expression, except that of phtD, is monocistronic. PhtD, PhtE, PhtB and PhtA are present in 100, 97, 81 and 62â% of the strains, respectively, and, by analysing its sequence conservation across 107 pneumococcal strains, we showed that PhtD displays very little variability. To analyse the physiological function of these proteins, several mutants were constructed. The quadruple Pht-deficient mutant was not able to grow in a poor culture medium, but the addition of Zn(2+) or Mn(2+) restored its growth capacity. Moreover, the phtD mRNA expression level increased when the culture medium was depleted in zinc. Therefore, we suggest that these proteins are zinc and manganese scavengers, and are able to store these metals and to release them when the bacterium faces an ion-restricted environment. The data also showed that this protein family, and more particularly PhtD, is a promising candidate to be incorporated into pneumococcal vaccines.