Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 49(12): 3332-3335, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875613

RESUMO

On-chip pump rejection filters are key building blocks in a variety of applications exploiting nonlinear phenomena, including Raman spectroscopy and photon-pair generation. Ultrahigh rejection has been achieved in the silicon technology by non-coherent cascading of modal-engineered Bragg filters. However, this concept cannot be directly applied to silicon nitride waveguides as the comparatively lower index contrast hampers the suppression of residual light propagating in the orthogonal polarization, limiting the achievable rejection. Here, we propose and demonstrate a novel, to the best of our knowledge, strategy to overcome this limitation based on non-coherent cascading of the modal- and polarization-engineered Bragg filters. Based on this concept, we experimentally demonstrate a rejection exceeding 60 dB for both polarizations, with a bandwidth of 4.4 nm. This is the largest rejection reported for silicon nitride Bragg gratings supporting both polarizations.

2.
Opt Express ; 30(7): 11298-11305, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473077

RESUMO

Integrated entangled photon-pair sources are key elements for enabling large-scale quantum photonic solutions and address the challenges of both scaling-up and stability. Here we report the first demonstration of an energy-time entangled photon-pair source based on spontaneous parametric down-conversion in silicon-based platform-stoichiometric silicon nitride (Si3N4)-through an optically induced second-order (χ(2)) nonlinearity, ensuring type-0 quasi-phase-matching of fundamental harmonic and its second-harmonic inside the waveguide. The developed source shows a coincidence-to-accidental ratio of 1635 for 8 µW pump power. We report two-photon interference with remarkable near-perfect visibility of 99.36±1.94%, showing high-quality photonic entanglement without excess background noise. This opens a new horizon for quantum technologies requiring the integration of a large variety of building functionalities on a single chip.

3.
Opt Express ; 30(6): 8550-8559, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299306

RESUMO

We report on the conception, fabrication and characterization of a new concept of optical fiber enabling a precise control of the ratio between the 2nd and 4th-order of chromatic dispersion (respectively ß2 and ß4) at 1.55 µm which is at the heart of the Four-Wave-Mixing (FWM) generation. For conventional highly nonlinear fiber the sensitivity of this ratio to fiber geometry fluctuations is very critical, making the fabrication process challenging. The new design fiber reconciles the accurate control of chromatic dispersion properties and fabrication by standard stack and draw method, allowing a robust and reliable method against detrimental fluctuations parameters during the fabrication process. Experimental frequency conversion with FWM in the new design fiber is demonstrated.

4.
Opt Lett ; 47(2): 341-344, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030601

RESUMO

Integrated wavelength filters with high optical rejection are key components in several silicon photonics circuits, including quantum photon-pair sources and spectrometers. Non-coherent cascading of modal-engineered Bragg filters allows for remarkable optical rejections in structures that only support transverse-electric (TE) polarized modes such as uncladded 220-nm-thick silicon. However, the restriction to TE-only platforms limits the versatility of the non-coherent cascading approach. Here, we propose and experimentally demonstrate a new, to the best of our knowledge, approach for high-rejection filters in polarization-diverse platforms by combining non-coherent cascading of modal-engineered Bragg filters and anisotropy-engineered metamaterial bends. Bragg filters provide a high rejection of the TE mode, while the metamaterial bends remove any residual power propagating in the transverse-magnetic (TM) mode, without any penalty in terms of insertion loss or device footprint. Based on this strategy, we demonstrate optical rejection exceeding 60 dB in 300-nm-thick, cladded silicon waveguides.

5.
Opt Lett ; 45(20): 5784-5787, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057284

RESUMO

Waveguide Bragg grating filters with narrow bandwidths and high optical rejections are key functions for several advanced silicon photonics circuits. Here, we propose and demonstrate a new, to the best of our knowledge, Bragg grating geometry that provides a narrowband and high rejection response. It combines the advantages of subwavelength and modal engineering. As a proof-of-concept demonstration, we implement the proposed Bragg filters in 220-nm-thick Si technology with a single etch step. We experimentally show flexible control of the filter selectivity, with measured null-to-null bandwidths below 2 nm, and strength of 60 dB rejection with a null-to-null bandwidth of 1.8 nm.

6.
Opt Lett ; 43(14): 3208-3211, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004533

RESUMO

Bragg filters stand as key building blocks of the silicon-on-insulator (SOI) photonics platform, allowing the implementation of advanced on-chip signal manipulation. However, achieving narrowband Bragg filters with large rejection levels is often hindered by fabrication constraints and imperfections. Here, we show that the combination of single-side corrugation asymmetry and subwavelength engineering provides a narrowband response with large corrugations, overcoming minimum feature size constraints of conventional Si Bragg filters. We comprehensively study the impact of the corrugation asymmetry in conventional and subwavelength single-etched SOI Bragg filters, showing their potential for bandwidth reduction. Finally, we experimentally demonstrate novel subwavelength geometry based on shifted corrugation teeth, achieving null-to-null bandwidths and rejections of 0.8 nm and 40 dB for the symmetric configuration and 0.6 nm and 15 dB for the asymmetric case.

7.
Opt Lett ; 42(8): 1468-1471, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28409775

RESUMO

The high index contrast of the silicon-on-insulator (SOI) platform allows the realization of ultra-compact photonic circuits. However, this high contrast hinders the implementation of narrow-band Bragg filters. These typically require corrugation widths of a few nanometers or double-etch geometries, hampering device fabrication. Here we report, for the first time, to the best of our knowledge, on the realization of SOI Bragg filters based on sub-wavelength index engineering in a differential corrugation width configuration. The proposed double periodicity structure allows narrow-band rejection with a single etch step and relaxed width constraints. Based on this concept, we experimentally demonstrate a single-etch, 220 nm thick, Si Bragg filter featuring a corrugation width of 150 nm, a rejection bandwidth of 1.1 nm, and an extinction ratio exceeding 40 dB. This represents a 10-fold width increase, compared to conventional single-periodicity, single-etch counterparts with similar bandwidths.

8.
Opt Express ; 20(24): 27220-5, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187577

RESUMO

We experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various pump polarization configurations agree well with the theoretical and numerical predictions based on classical models. We discuss the impact of noise under these different polarization configurations.


Assuntos
Luz , Modelos Teóricos , Fibras Ópticas , Fótons , Refratometria/instrumentação , Espalhamento de Radiação , Telecomunicações/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Tecnologia de Fibra Óptica/instrumentação
9.
Opt Lett ; 37(11): 1946-8, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22660082

RESUMO

We study numerically the interaction of spatially localized modes in strongly scattering two-dimensional (2D) media. We move eigenvalues in the complex plane by changing gradually the index of a single scatterer. When spatial and spectral overlap is sufficient, localized states couple, and avoided level crossing is observed. We show that local manipulation of the disordered structure can couple several localized states to form an extended chain of hybridized modes crossing the entire sample, thus changing the nature of certain modes from localized to extended in a nominally localized disordered system. We suggest such a chain in 2D random systems is the analog of one-dimensional necklace states, the occasional open channels predicted by Pendry [Physics 1, 20 (2008).] through which the light can sneak through an opaque medium.

10.
Opt Express ; 18(10): 10731-41, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20588925

RESUMO

The effect of birefringence in 2-fold-symmetric microstructured optical fibers on the phase matching conditions for four-wave mixing is analyzed. The three general types of four-wave mixing are considered. General features are obtained through analytic expansions of phase-matching formulas. Three commonly used designs of fibers are analyzed numerically. Particular designs allow the generation of specified wavelengths, supercontinuum or entangled photons.


Assuntos
Fibras Ópticas , Refratometria/instrumentação , Dióxido de Silício/química , Ar , Birrefringência , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Transição de Fase
11.
Sci Rep ; 9(1): 5347, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926853

RESUMO

Sub-wavelength grating (SWG) metamaterials have garnered a great interest for their singular capability to shape the propagation of light. However, practical SWG implementations are limited by fabrication constraints, such as minimum feature size. Here, we present a new nanophotonic waveguide grating concept that exploits phase-matching engineering to suppress diffraction effects for a period three times larger than those with SWG approaches. This long-period grating not only facilitates fabrication, but also enables a new diffraction-less regime with additional degrees of freedom to control light propagation. More specifically, the proposed phase-matching engineering enables selective diffraction suppression, providing new tools to shape propagation in the grating. We harness this flexible diffraction control to yield single-mode propagation in, otherwise, highly multimode waveguides, and to implement Bragg filters that combine highly-diffractive and diffraction-less regions to dramatically increase light rejection. Capitalizing on this new concept, we experimentally demonstrate a Si membrane Bragg filter with record rejection value exceeding 60 dB. These results demonstrate the potential of the proposed long-period grating for the engineering of diffraction in nanophotonic waveguides and pave the way for the development of a new generation of high-performance Si photonics devices.

12.
Light Sci Appl ; 7: 17163, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839519

RESUMO

White-light interferometry is one of today's most precise tools for determining the properties of optical materials. Its achievable precision and accuracy are typically limited by systematic errors due to a high number of interdependent data-fitting parameters. Here, we introduce spectrally resolved quantum white-light interferometry as a novel tool for optical property measurements, notably, chromatic dispersion in optical fibres. By exploiting both spectral and photon-number correlations of energy-time entangled photon pairs, the number of fitting parameters is significantly reduced, which eliminates systematic errors and leads to an absolute determination of the material parameter. By comparing the quantum method to state-of-the-art approaches, we demonstrate the quantum advantage of 2.4 times better measurement precision, despite requiring 62 times fewer photons. The improved results are due to conceptual advantages enabled by quantum optics, which are likely to define new standards in experimental methods for characterising optical materials.

13.
Opt Express ; 14(22): 10359-70, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19529434

RESUMO

We report what we believe to be the first Tilted short-period Fiber Bragg Grating photowritten in a microstructured optical fiber for refractive index measurement. We investigate the spectral sensitivity of Tilted Fiber Bragg Grating to refractive index liquid inserted into the holes of a multimode microstructured fiber. We measure the wavelength shift of the first four modes experimentally observed when calibrated oils are inserted into the fiber holes, and thus we determine the refractive index resolution for each of these modes. Moreover, a cross comparison between experimental and simulation results of a modal analysis is performed. Two simulation tools are used, respectively based on the localized functions method and on a finite element method. All results are in very good agreement.

14.
Opt Express ; 12(19): 4366-71, 2004 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-19483985

RESUMO

We report on the experimental demonstration of a white-light supercontinuum generation in normally dispersive singlemode air-silica microstructured fiber. We demonstrate that the simultaneous excitation of the microstuctured fiber in its normal and anomalous dispersion regimes using the fundamental and second harmonic signals of a passively Q-switched microchip laser leads to a homogeneous supercontinuum in the visible range. This pumping scheme allows the suppression of the cascaded Raman effect predominance in favor of an efficient spectrum broadening induced by parametric phenomena. A flat supercontinuum extended from 400 to 700 nm is achieved.

15.
Appl Opt ; 48(6): 1047-51, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23567563

RESUMO

We present a formal analogy between the eigenvalue problem for guided scalar modes in a low-contrast photonic bandgap fiber and quasi-stationary TM modes of a two-dimensional (2D) photonic structure. Using this analogy, we numerically study the confinement losses of disordered microstructured fibers through the leakage rate of an open 2D system with high refractive index inclusions. Our results show that for large values of the disorder, the confinement losses increase. However, they also suggest that losses might be improved in strongly disordered fibers by exploring ranges of physical parameters where Anderson localization sets in.

16.
Opt Lett ; 31(12): 1779-81, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16729068

RESUMO

A simple self-referenced nondestructive method is proposed for measuring the cutoff wavelength of microstructured optical fibers (MOFs). It is based on the analysis of the time-dependent optical power transmitted through a bow-tie slit rotating in the far-field pattern of the fiber under test. As a first demonstration, the cutoff wavelength of a 2 m MOF sample is found to be close to that provided by numerical predictions (approximately 25 nm higher). Because of the high dynamics of the measurement, the uncertainty is limited to Dlambda= +/-10 nm.

17.
Appl Opt ; 44(13): 2496-500, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15881056

RESUMO

Photonic crystal fibers (PCFs) are microstructured waveguides that are used in metrology, nonlinear optics, and coherent tomography. PCF studies are focused mainly on the improvement of dispersion properties and wide spectral single-mode operating domains. Consequently, in the astronomical context this kind of fiber is a good candidate for use in the design of a fiber-linked version of a stellar interferometer for aperture synthesis. We discuss the potential of these fibers to take advantage of wide spectral single-mode operation. We propose an experimental setup that acts as a two-beam interferometer that uses PCFs to measure fringe contrast at four wavelengths (670, 980, 1328, and 1543 nm), which correspond to the R, I, J, and H astronomical bands, respectively, with the same couple of PCFs. For this purpose we use, for the first time to our knowledge, a piezoelectric PCF optical path modulator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA