Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Psychiatry ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561465

RESUMO

INTRODUCTION: A microdeletion including the SNORD116 gene (SNORD116 MD) has been shown to drive the Prader-Willi syndrome (PWS) features. PWS is a neurodevelopmental disorder clinically characterized by endocrine impairment, intellectual disability and psychiatric symptoms such as a lack of emotional regulation, impulsivity, and intense temper tantrums with outbursts. In addition, this syndrome is associated with a nutritional trajectory characterized by addiction-like behavior around food in adulthood. PWS is related to the genetic loss of expression of a minimal region that plays a potential role in epigenetic regulation. Nevertheless, the role of the SNORD116 MD in DNA methylation, as well as the impact of the oxytocin (OXT) on it, have never been investigated in human neurons. METHODS: We studied the methylation marks in induced pluripotent stem-derived dopaminergic neurons carrying a SNORD116 MD in comparison with those from an age-matched adult healthy control. We also performed identical neuron differentiation in the presence of OXT. We performed a genome-wide DNA methylation analysis from the iPSC-derived dopaminergic neurons by reduced-representation bisulfite sequencing. In addition, we performed RNA sequencing analysis in these iPSC-derived dopaminergic neurons differentiated with or without OXT. RESULTS: The analysis revealed that 153,826 cytosines were differentially methylated between SNORD116 MD neurons and control neurons. Among the differentially methylated genes, we determined a list of genes also differentially expressed. Enrichment analysis of this list encompassed the dopaminergic system with COMT and SLC6A3. COMT displayed hypermethylation and under-expression in SNORD116 MD, and SLC6A3 displayed hypomethylation and over-expression in SNORD116 MD. RT-qPCR confirmed significant over-expression of SLC6A3 in SNORD116 MD neurons. Moreover, the expression of this gene was significantly decreased in the case of OXT adjunction during the differentiation. CONCLUSION: SNORD116 MD dopaminergic neurons displayed differential methylation and expression in the COMT and SLC6A3 genes, which are related to dopaminergic clearance.

2.
Mol Psychiatry ; 26(1): 51-59, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082508

RESUMO

Addictive disorders have been much investigated and many studies have underlined the role of environmental factors such as social interaction in the vulnerability to and maintenance of addictive behaviors. Research on addiction pathophysiology now suggests that certain behavioral disorders are addictive, one example being food addiction. Yet, despite the growing body of knowledge on addiction, it is still unknown why only some of the individuals exposed to a drug become addicted to it. This observation has prompted the consideration of genetic heritage, neurodevelopmental trajectories, and gene-environment interactions in addiction vulnerability. Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder in which children become addicted to food and show early social impairment. PWS is caused by the deficiency of imprinted genes located on the 15q11-q13 chromosome. Among them, the SNORD116 gene was identified as the minimal gene responsible for the PWS phenotype. Several studies have also indicated the role of the Snord116 gene in animal and cellular models to explain PWS pathophysiology and phenotype (including social impairment and food addiction). We thus present here the evidence suggesting the potential involvement of the SNORD116 gene in addictive disorders.


Assuntos
Comportamento Aditivo/genética , Comportamento Aditivo/fisiopatologia , Síndrome de Prader-Willi/genética , RNA Nucleolar Pequeno/genética , Animais , Dependência de Alimentos/genética , Humanos , Fenótipo
3.
Plant Cell ; 22(9): 3142-52, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20823192

RESUMO

Replication of positive-strand RNA viruses, the largest group of plant viruses, is initiated by viral RNA-dependent RNA polymerase (RdRp). Given its essential function in viral replication, understanding the regulation of RdRp is of great importance. Here, we show that Turnip yellow mosaic virus (TYMV) RdRp (termed 66K) is degraded by the proteasome at late time points during viral infection and that the accumulation level of 66K affects viral RNA replication in infected Arabidopsis thaliana cells. We mapped the cis-determinants responsible for 66K degradation within its N-terminal noncatalytic domain, but we conclude that 66K is not a natural N-end rule substrate. Instead, we show that a proposed PEST sequence within 66K functions as a transferable degradation motif. In addition, several Lys residues that constitute target sites for ubiquitylation were mapped; mutation of these Lys residues leads to stabilization of 66K. Altogether, these results demonstrate that TYMV RdRp is a target of the ubiquitin-proteasome system in plant cells and support the idea that proteasomal degradation may constitute yet another fundamental level of regulation of viral replication.


Assuntos
Arabidopsis/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Tymovirus/fisiologia , Ubiquitina/metabolismo , Interações Hospedeiro-Patógeno , Fosforilação , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Tymovirus/enzimologia , Tymovirus/genética , Replicação Viral
4.
Mol Vis ; 17: 309-22, 2011 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-21293734

RESUMO

AIMS: To describe genetic and clinical findings in a French family affected by best vitelliform macular dystrophy (BVMD). METHODS: We screened eight at-risk members of a family, including a BVMD-affected proband, by direct sequencing of 11 bestrophin-1 (BEST1) exons. Individuals underwent ophthalmic examination and autofluorescent fundus imaging, indocyanine green angiography, electro-oculogram (EOG), electroretinogram (ERG), multifocal ERG, optical coherence tomography (OCT), and where possible, spectral domain OCT. RESULTS: The sequence analysis of the BEST1 gene revealed one previously unknown mutation, c.15C>A (p.Y5X), in two family members and one recently described mutation, c.430A>G (p.S144G), in five family members. Fundus examination and electrophysiological responses provided no evidence of the disease in the patient carrying only the p.Y5X mutation. Three patients with the p.S144G mutation did not show any preclinical sign of BVMD except altered EOGs. Two individuals of the family exhibited a particularly severe phenotype of multifocal BVMD-one individual carrying the p.S144G mutation heterozygously and one individual harboring both BEST1 mutations (p.S144G inherited from his mother and p.Y5X from his father). Both of these family members had multifocal vitelliform autofluorescent lesions combined with abnormal EOG, and the spectral domain OCT displayed a serous retinal detachment. In addition, ERGs demonstrated widespread retinal degeneration and multifocal ERGs showed a reduction in the central retina function, which could be correlated with the decreased visual acuity and visual field scotomas. CONCLUSIONS: A thorough clinical evaluation found no pathological phenotype in the patient carrying the isolated p.Y5X mutation. The patients carrying the p.S144G variation in the protein exhibited considerable intrafamilial phenotypic variability. Two young affected patients in this family exhibited an early onset, severe, multifocal BVMD with a diffuse distribution of autofluorescent deposits throughout the retina and rapid evolution toward the loss of central vision. The other genetically affected relatives had only abnormal EOGs and displayed no or extremely slow electrophysiological evolution.


Assuntos
Canais de Cloreto/genética , Proteínas do Olho/genética , Mutação , Distrofia Macular Viteliforme/genética , Adolescente , Adulto , Alelos , Bestrofinas , Criança , Eletroculografia/métodos , Eletrorretinografia/métodos , Éxons , Saúde da Família , Feminino , França , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Retina/patologia , Análise de Sequência de DNA , Tomografia de Coerência Óptica/métodos
5.
Clin Epigenetics ; 13(1): 159, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389046

RESUMO

BACKGROUND: Prader-Willi syndrome is a rare genetic neurodevelopmental disorder caused by a paternal deficiency of maternally imprinted gene expression located in the chromosome 15q11-q13 region. Previous studies have demonstrated that several classes of neurodevelopmental disorders can be attributed to either over- or under-expression of specific genes that may lead to impairments in neuronal generation, differentiation, maturation and growth. Epigenetic changes that modify gene expression have been highlighted in these disorders. One recent study focused on epigenetic analysis and compared patients with PWS with patients with other imprinting disorders. No study, however, has yet focused on epigenetics in patients with PWS specifically by comparing the mutations associated with this syndrome. OBJECTIVE: This study investigated the epigenetic modifications in patients with PWS and patients with PWS-related disorders caused by inactivation of two genes of the PWS chromosomal region, SNORD116 and MAGEL2. Our approach also aimed to compare the epigenetic modifications in PWS and PWS-related disorders. METHODS: We compared genome-wide methylation analysis (GWAS) in seven blood samples from patients with PWS phenotype (five with deletions of the PWS locus, one with a microdeletion of SNORD116 and one with a frameshift mutation of MAGEL2 presenting with Schaaf-Yang syndrome), as well as two control patients. Controls were infants that had been studied for suspicion of genetic diseases that was not confirmed by the genetic analysis and the clinical follow-up. RESULTS: The analysis identified 29,234 differentially methylated cytosines, corresponding to 5,308 differentially methylated regions (DMRs), which matched with 2,280 genes. The DMRs in patients with PWS were associated with neurodevelopmental pathways, endocrine dysfunction and social and addictive processes consistent with the key features of the PWS phenotype. In addition, the separate analysis for the SNORD116 and MAGEL2 deletions revealed that the DMRs associated with the SNORD116 microdeletion were found in genes implicated in metabolic pathways and nervous system development, whereas MAGEL2 mutations mostly concerned genes involved in macromolecule biosynthesis. CONCLUSION: The PWS is associated with epigenetic modifications with differences in SNORD116 and MAGEL2 mutations, which seem to be relevant to the different associated phenotypes.


Assuntos
Metilação de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Distúrbios Nutricionais/genética , Distúrbios Nutricionais/fisiopatologia , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/fisiopatologia , Adulto , Fatores Etários , Criança , Epigênese Genética , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Lactente , Masculino , Adulto Jovem
6.
Transl Psychiatry ; 10(1): 274, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32772048

RESUMO

The Research Domain Criteria project (RDoc) proposes a new classification system based on information from several fields in order to encourage translational perspectives. Nevertheless, integrating genetic markers into this classification has remained difficult because of the lack of powerful associations between targeted genes and RDoC domains. We hypothesized that genetic diseases with psychiatric manifestations would be good models for RDoC gene investigations and would thereby extend the translational approach to involve targeted gene pathways. To explore this possibility, we reviewed the current knowledge on Prader-Willi syndrome, a genetic disorder caused by the absence of expression of some of the genes of the chromosome 15q11-13 region inherited from the father. Indeed, we found that the associations between genes of the PW locus and the modification identified in the relevant behavioral, physiological, and brain imaging studies followed the structure of the RDoC matrix and its six domains (positive valence, negative valence, social processing, cognitive systems, arousal/regulatory systems, and sensorimotor systems).


Assuntos
Transtornos Mentais , Síndrome de Prader-Willi , Psiquiatria , Encéfalo/diagnóstico por imagem , Humanos , Transtornos Mentais/genética , Síndrome de Prader-Willi/genética , Projetos de Pesquisa
7.
Mol Vis ; 15: 1139-52, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19503746

RESUMO

PURPOSE: The retina is highly exposed to oxidative stress due to the high level of oxygen consumption in this tissue and its exposure to light. The main DNA base lesion generated by oxygen free radicals is 8-oxoguanine (8-oxoG). However, its presence in retinal cells and the mechanisms underlying its repair remain undetermined. METHODS: 8-oxoguanine DNA glycosylase (Ogg1) gene expression and messenger localization in adult mouse ocular tissues was analyzed by RT-PCR and in situ hybridization. Using immunohistochemistry, we determined the localization of Ogg1 protein and three base excision repair (BER) enzymes: apurinic/apyrimidic endonuclease (APE1), DNA polymerase beta, and X-ray repair cross-complementation group 1 (XRCC1). Ogg1 and AP-lyase activities in the neuroretina were obtained using double-stranded oligonucleotides harboring either an 8-oxoG residue or a tetrahydrofuran. RESULTS: We report here that 8-oxoG is abundant in the retina. Ogg1, the enzyme responsible for the recognition and excision of the oxidized base, is present in its active form and found mainly in ganglion cells and photoreceptor inner segments. We show that APE1 and DNA polymerase beta, two BER proteins involved in 8-oxoG repair, are also present in these cells. The cellular distribution of these proteins was similar to that of Ogg1. XRRC1 is present in both inner nuclear and ganglion cells layers; however, this protein is absent from photoreceptor inner segments. CONCLUSIONS: This is the first study to demonstrate the presence of a functional 8-oxoG BER pathway in retinal neurons. The study of three BER proteins involved in 8-oxoG elimination demonstrates that XRCC1 localization differs from those of Ogg1, APE1, and DNA polymerase beta. This result suggests that the elimination of 8-oxoG is coordinated through two pathways, which differ slightly according to the cellular localization of the abnormally oxidized guanine.


Assuntos
DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Expressão Gênica , Retina/metabolismo , Análise de Variância , Animais , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Olho/metabolismo , Perfilação da Expressão Gênica/métodos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Reação em Cadeia da Polimerase , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
8.
Stem Cells Int ; 2019: 2945435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236114

RESUMO

The discovery of novel drugs for neurodegenerative diseases has been a real challenge over the last decades. The development of patient- and/or disease-specific in vitro models represents a powerful strategy for the development and validation of lead candidates in preclinical settings. The implementation of a reliable platform modeling dopaminergic neurons will be an asset in the study of dopamine-associated pathologies such as Parkinson's disease. Disease models based on cell reprogramming strategies, using either human-induced pluripotent stem cells or transcription factor-mediated transdifferentiation, are among the most investigated strategies. However, multipotent adult stem cells remain of high interest to devise direct conversion protocols and establish in vitro models that could bypass certain limitations associated with reprogramming strategies. Here, we report the development of a six-step chemically defined protocol that drives the transdifferentiation of human nasal olfactory stem cells into dopaminergic neurons. Morphological changes were progressively accompanied by modifications matching transcript and protein dopaminergic signatures such as LIM homeobox transcription factor 1 alpha (LMX1A), LMX1B, and tyrosine hydroxylase (TH) expression, within 42 days of differentiation. Phenotypic changes were confirmed by the production of dopamine from differentiated neurons. This new strategy paves the way to develop more disease-relevant models by establishing reprogramming-free patient-specific dopaminergic cell models for drug screening and/or target validation for neurodegenerative diseases.

9.
Mol Neurobiol ; 55(8): 6463-6479, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29318446

RESUMO

The impairment of hippocampal neurogenesis at the early stages of Alzheimer's disease (AD) is believed to support early cognitive decline. Converging studies sustain the idea that vitamin D might be linked to the pathophysiology of AD and to hippocampal neurogenesis. Nothing being known about the effects of vitamin D on hippocampal neurogenesis in AD, we assessed them in a mouse model of AD. In a previous study, we observed that dietary vitamin D supplementation in female AD-like mice reduced cognitive decline only when delivered during the symptomatic phase. With these data in hand, we wondered whether the consequences of vitamin D administration on hippocampal neurogenesis are stage-dependent. Male wild-type and transgenic AD-like mice (5XFAD model) were fed with a diet containing either no vitamin D (0VD) or a normal dose of vitamin D (NVD) or a high dose of vitamin D (HVD), from month 1 to month 6 (preventive arm) or from month 4 to month 9 (curative arm). Working memory was assessed using the Y-maze, while amyloid burden, astrocytosis, and neurogenesis were quantified using immunohistochemistry. In parallel, the effects of vitamin D on proliferation and differentiation were assayed on primary cultures of murine neural progenitor cells. Improved working memory and neurogenesis were observed when high vitamin D supplementation was administered during the early phases of the disease, while a normal dose of vitamin D increased neurogenesis during the late phases. Conversely, an early hypovitaminosis D increased the number of amyloid plaques in AD mice while a late hypovitaminosis D impaired neurogenesis in AD and WT mice. The observed in vivo vitamin D-associated increased neurogenesis was partially substantiated by an augmented in vitro proliferation but not an increased differentiation of neural progenitors into neurons. Finally, a sexual dimorphism was observed. Vitamin D supplementation improved the working memory of males and females, when delivered during the pre-symptomatic and symptomatic phases, respectively. Our study establishes that (i) neurogenesis is improved by vitamin D in a male mouse model of AD, in a time-dependent manner, and (ii) cognition is enhanced in a gender-associated way. Additional pre-clinical studies are required to further understand the gender- and time-specific mechanisms of action of vitamin D in AD. This may lead to an adaptation of vitamin D supplementation in relation to patient's gender and age as well as to the stage of the disease.


Assuntos
Doença de Alzheimer/fisiopatologia , Cognição/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Vitamina D/farmacologia , Doença de Alzheimer/patologia , Amiloide/metabolismo , Animais , Calcitriol/farmacologia , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Caracteres Sexuais , Fatores de Tempo , Vitamina D/química
10.
Stem Cells Int ; 2017: 1478606, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28698717

RESUMO

Stem cell-based therapies critically rely on selective cell migration toward pathological or injured areas. We previously demonstrated that human olfactory ectomesenchymal stem cells (OE-MSCs), derived from an adult olfactory lamina propria, migrate specifically toward an injured mouse hippocampus after transplantation in the cerebrospinal fluid and promote functional recoveries. However, the mechanisms controlling their recruitment and homing remain elusive. Using an in vitro model of blood-brain barrier (BBB) and secretome analysis, we observed that OE-MSCs produce numerous proteins allowing them to cross the endothelial wall. Then, pan-genomic DNA microarrays identified signaling molecules that lesioned mouse hippocampus overexpressed. Among the most upregulated cytokines, both recombinant SPP1/osteopontin and CCL2/MCP-1 stimulate OE-MSC migration whereas only CCL2 exerts a chemotactic effect. Additionally, OE-MSCs express SPP1 receptors but not the CCL2 cognate receptor, suggesting a CCR2-independent pathway through other CCR receptors. These results confirm that OE-MSCs can be attracted by chemotactic cytokines overexpressed in inflamed areas and demonstrate that CCL2 is an important factor that could promote OE-MSC engraftment, suggesting improvement for future clinical trials.

11.
J Vis Exp ; (88): e51278, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24998179

RESUMO

The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm x cm(2) on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10(-3) cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.


Assuntos
Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Técnicas de Cultura de Células/métodos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Transporte Biológico Ativo , Carbocianinas/química , Carbocianinas/farmacocinética , Permeabilidade da Membrana Celular , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Masculino , Modelos Animais , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Rodamina 123/química , Rodamina 123/farmacocinética
12.
Invest Ophthalmol Vis Sci ; 50(8): 3562-72, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19407027

RESUMO

PURPOSE: Sirtuin1 (Sirt1) is an NAD(+)-dependent deacetylase involved in development, cell survival, stress resistance, energy metabolism, and aging. It is expressed in the mammalian central nervous system (CNS) and is activated during processes associated with neuroprotection. The retinal degeneration 10 (rd10) mouse model of retinitis pigmentosa (RP) was used to investigate the possible role of Sirt1 in this type of retinal degeneration. METHODS: Eyes from control and rd10 mice were used. Sirt1 mRNA was detected by in situ hybridization, and its abundance was estimated by semiquantitative RT-PCR. The presence of Sirt1 protein was investigated by immunohistofluorescence and Western blot analysis. The apoptosis of photoreceptor cells was analyzed by terminal dUTP transferase nick-end labeling (TUNEL). Immunolabeling for Sirt1, apoptosis-inducing factor (Aif), and caspase-12 (Casp-12) was performed on retinal tissue sections. RESULTS: Sirt1 mRNA and immunoreactivity were observed in normal adult mouse eyes. In the control retina, Sirt1 was immunolocalized mostly to the nucleus. In rd10 mice with retinal degeneration, changes in Sirt1 immunolabeling were observed only in the retinal outer nuclear layer (ONL). The pathologic pattern of Sirt1 immunoreactivity correlated with the start of retinal degeneration in rd10 mice. CONCLUSIONS: The results suggest a link between Sirt1 production and retinal degeneration in rd10 mice. The anti-apoptotic, neuroprotective role of Sirt1 in the mouse retina is based on the involvement of Sirt1 in double DNA strand-break repair mechanisms and in maintaining energy homeostasis in photoreceptor cells. The results suggest that the neuroprotective properties of Sirt1 may gradually weaken in rd10 mouse photoreceptor cells.


Assuntos
Retina/metabolismo , Retinose Pigmentar/metabolismo , Sirtuínas/fisiologia , Animais , Apoptose , Fator de Indução de Apoptose/metabolismo , Western Blotting , Caspase 12/metabolismo , Sondas de DNA , Modelos Animais de Doenças , Técnica Indireta de Fluorescência para Anticorpo , Expressão Gênica/fisiologia , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , RNA Mensageiro/metabolismo , Retina/patologia , Retinose Pigmentar/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1
13.
Invest Ophthalmol Vis Sci ; 50(8): 3931-42, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19420333

RESUMO

PURPOSE: To evaluate functional and ultrastructural changes in the retina of scavenger receptor B1 (SR-BI) knockout (KO) mice consuming a high fat cholate (HFC) diet. METHODS: Three-month-old male KO and wild-type (WT) mice were fed an HFC diet for 30 weeks. After diet supplementation, plasma cholesterol levels and electroretinograms were analyzed. Neutral lipids were detected with oil red O, and immunohistochemistry was performed on cryostat ocular tissue sections. The retina, Bruch's membrane (BM), retinal pigment epithelium (RPE), and choriocapillaris (CC) were analyzed by transmission electron microscopy. RESULTS: Using the WT for reference, ultrastructural changes were recorded in HFC-fed SR-BI KO mice, including lipid inclusions, a patchy disorganization of the photoreceptor outer segment (POS) and the outer nuclear layer (ONL), and BM thickening with sparse sub-RPE deposits. Within the CC, there was abnormal disorganization of collagen fibers localized in ectopic sites with sparse and large vacuolization associated with infiltration of macrophages in the subretinal space, reflecting local inflammation. These lesions were associated with electroretinographic abnormalities, particularly increasing implicit time in a- and b-wave scotopic responses. Abnormal vascular endothelial growth factor (VEGF) staining was detected in the outer nuclear layer. CONCLUSIONS: HFC-fed SR-BI KO mice thus presented sub-RPE lipid-rich deposits and functional and morphologic alterations similar to some features observed in dry AMD. The findings lend further support to the hypothesis that atherosclerosis causes retinal and subretinal damage that increases susceptibility to some forms of AMD.


Assuntos
Doença da Artéria Coronariana/patologia , Dieta Aterogênica , Hipercolesterolemia/patologia , Degeneração Macular/patologia , Retina/fisiologia , Retina/ultraestrutura , Receptores Depuradores Classe B/fisiologia , Animais , Lâmina Basilar da Corioide/ultraestrutura , Colatos/administração & dosagem , Colesterol/sangue , Corioide/irrigação sanguínea , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Eletrorretinografia , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Degeneração Macular/etiologia , Degeneração Macular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Epitélio Pigmentado da Retina/ultraestrutura , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA