Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 206(4): 686-699, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33419770

RESUMO

East Coast fever (ECF), caused by Theileria parva, is the most important tick-borne disease of cattle in sub-Saharan Africa. Practical disadvantages associated with the currently used live-parasite vaccine could be overcome by subunit vaccines. An 80-aa polypeptide derived from the C-terminal portion of p67, a sporozoite surface Ag and target of neutralizing Abs, was the focus of the efforts on subunit vaccines against ECF and subjected to several vaccine trials with very promising results. However, the vaccination regimen was far from optimized, involving three inoculations of 450 µg of soluble p67C (s-p67C) Ag formulated in the Seppic adjuvant Montanide ISA 206 VG. Hence, an improved formulation of this polypeptide Ag is needed. In this study, we report on two nanotechnologies that enhance the bovine immune responses to p67C. Individually, HBcAg-p67C (chimeric hepatitis B core Ag virus-like particles displaying p67C) and silica vesicle (SV)-p67C (s-p67C adsorbed to SV-140-C18, octadecyl-modified SVs) adjuvanted with ISA 206 VG primed strong Ab and T cell responses to p67C in cattle, respectively. Coimmunization of cattle (Bos taurus) with HBcAg-p67C and SV-p67C resulted in stimulation of both high Ab titers and CD4 T cell response to p67C, leading to the highest subunit vaccine efficacy we have achieved to date with the p67C immunogen. These results offer the much-needed research depth on the innovative platforms for developing effective novel protein-based bovine vaccines to further the advancement.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Nanotecnologia/métodos , Vacinas Protozoárias/imunologia , Theileria parva/fisiologia , Theileriose/imunologia , Doenças Transmitidas por Carrapatos/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Bovinos , Vírus da Hepatite B/química , Vírus da Hepatite B/genética , Camundongos , Óleo Mineral/administração & dosagem , Nanopartículas/química , Proteínas de Protozoários/genética , Vacinas Protozoárias/genética , Células RAW 264.7 , Dióxido de Silício/química , Carrapatos , Vacinação , Vacinas de Subunidades Antigênicas , Proteínas do Core Viral/química , Proteínas do Core Viral/genética
2.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814514

RESUMO

African swine fever is a highly contagious viral disease of mandatory declaration to the World Organization for Animal Health (OIE). The lack of available vaccines makes its control difficult; thus, African swine fever virus (ASFV) represents a major threat to the swine industry. Inactivated vaccines do not confer solid protection against ASFV. Conversely, live attenuated viruses (LAV), either naturally isolated or obtained by genetic manipulation, have demonstrated reliable protection against homologous ASFV strains, although little or no protection has been demonstrated against heterologous viruses. Safety concerns are a major issue for the use of ASFV attenuated vaccine candidates and have hampered their implementation in the field so far. While trying to develop safer and efficient ASFV vaccines, we found that the deletion of the viral CD2v (EP402R) gene highly attenuated the virulent BA71 strain in vivo Inoculation of pigs with the deletion mutant virus BA71ΔCD2 conferred protection not only against lethal challenge with the parental BA71 but also against the heterologous E75 (both genotype I strains). The protection induced was dose dependent, and the cross-protection observed in vivo correlated with the ability of BA71ΔCD2 to induce specific CD8+ T cells capable of recognizing both BA71 and E75 viruses in vitro Interestingly, 100% of the pigs immunized with BA71ΔCD2 also survived lethal challenge with Georgia 2007/1, the genotype II strain of ASFV currently circulating in continental Europe. These results open new avenues to design ASFV cross-protective vaccines, essential to fight ASFV in areas where the virus is endemic and where multiple viruses are circulating.IMPORTANCE African swine fever virus (ASFV) remains enzootic in most countries of Sub-Saharan Africa, today representing a major threat for the development of their swine industry. The uncontrolled presence of ASFV has favored its periodic exportation to other countries, the last event being in Georgia in 2007. Since then, ASFV has spread toward neighboring countries, reaching the European Union's east border in 2014. The lack of available vaccines against ASFV makes its control difficult; so far, only live attenuated viruses have demonstrated solid protection against homologous experimental challenges, but they have failed at inducing solid cross-protective immunity against heterologous viruses. Here we describe a new LAV candidate with unique cross-protective abilities: BA71ΔCD2. Inoculation of BA71ΔCD2 protected pigs not only against experimental challenge with BA71, the virulent parental strain, but also against heterologous viruses, including Georgia 2007/1, the genotype II strain of ASFV currently circulating in Eastern Europe.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Virais/administração & dosagem , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/patogenicidade , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Células Cultivadas , Imunização , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/virologia , Suínos , Proteínas Virais/genética
3.
Vet Res ; 49(1): 90, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208957

RESUMO

African swine fever (ASF) is a pathology of pigs against which there is no treatment or vaccine. Understanding the equilibrium between innate and adaptive protective responses and immune pathology might contribute to the development of strategies against ASFV. Here we compare, using a proteomic approach, the course of the in vivo infection caused by two homologous strains: the virulent E75 and the attenuated E75CV1. Our results show a progressive loss of proteins by day 7 post-infection (pi) with E75, reflecting tissue destruction. Many signal pathways were affected by both infections but in different ways and extensions. Cytoskeletal remodelling and clathrin-endocytosis were affected by both isolates, while a greater number of proteins involved on inflammatory and immunological pathways were altered by E75CV1. 14-3-3 mediated signalling, related to immunity and apoptosis, was inhibited by both isolates. The implication of the Rho GTPases by E75CV1 throughout infection is also evident. Early events reflected the lack of E75 recognition by the immune system, an evasion strategy acquired by the virulent strains, and significant changes at 7 days post-infection (dpi), coinciding with the peak of infection and the time of death. The protein signature at day 31 pi with E75CV1 seems to reflect events observed at 1 dpi, including the upregulation of proteosomal subunits and molecules described as autoantigens (vimentin, HSPB1, enolase and lymphocyte cytosolic protein 1), which allow the speculation that auto-antibodies could contribute to chronic ASFV infections. Therefore, the use of proteomics could help understand ASFV pathogenesis and immune protection, opening new avenues for future research.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/imunologia , Linfonodos/imunologia , Proteômica , Febre Suína Africana/virologia , Animais , Suínos
4.
J Virol ; 88(22): 13322-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210179

RESUMO

UNLABELLED: African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8(+) T cells in blood. Aiming to demonstrate the presence of additional CD8(+) T-cell determinants with protective potential, an expression library containing more than 4,000 individual plasmid clones was constructed, each one randomly containing a Sau3AI restriction fragment of the viral genome (p54, p30, and hemagglutinin open reading frames [ORFs] excluded) fused to ubiquitin. Immunization of farm pigs with the expression library yielded 60% protection against lethal challenge with the virulent E75 strain. These results were further confirmed by using specific-pathogen-free pigs after challenging them with 10(4) hemadsorbing units (HAU) of the cell culture-adapted strain E75CV1. On this occasion, 50% of the vaccinated pigs survived the lethal challenge, and 2 out of the 8 immunized pigs showed no viremia or viral excretion at any time postinfection. In all cases, protection was afforded in the absence of detectable specific antibodies prior to challenge and correlated with the detection of specific T-cell responses at the time of sacrifice. In summary, our results clearly demonstrate the presence of additional protective determinants within the African swine fever virus (ASFV) genome and open up the possibility for their future identification. IMPORTANCE: African swine fever is a highly contagious disease of domestic and wild pigs that is endemic in many sub-Saharan countries, where it causes important economic losses and is currently in continuous expansion across Europe. Unfortunately, there is no treatment nor an available vaccine. Early attempts using attenuated vaccines demonstrated their potential to protect pigs against experimental infection. However, their use in the field remains controversial due to safety issues. Although inactive and subunit vaccines did not confer solid protection against experimental ASFV infection, our DNA vaccination results have generated new expectations, confirming the key role of T-cell responses in protection and the existence of multiple ASFV antigens with protective potential, more of which are currently being identified. Thus, the future might bring complex and safe formulations containing more than a single viral determinant to obtain broadly protective vaccines. We believe that obtaining the optimal vaccine formulation it is just a matter of time, investment, and willingness.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Imunização/métodos , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Vírus da Febre Suína Africana/genética , Animais , Expressão Gênica , Biblioteca Gênica , Masculino , Plasmídeos/administração & dosagem , Análise de Sobrevida , Suínos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
5.
Vet Res ; 46: 135, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26589145

RESUMO

African swine fever virus (ASFV) is the causal agent of African swine fever, a hemorrhagic and often lethal porcine disease causing enormous economical losses in affected countries. Endemic for decades in most of the sub-Saharan countries and Sardinia, the risk of ASFV-endemicity in Europe has increased since its last introduction into Europe in 2007. Live attenuated viruses have been demonstrated to induce very efficient protective immune responses, albeit most of the time protection was circumscribed to homologous ASFV challenges. However, their use in the field is still far from a reality, mainly due to safety concerns. In this study we compared the course of the in vivo infection caused by two homologous ASFV strains: the virulent E75 and the cell cultured adapted strain E75CV1, obtained from adapting E75 to grow in the CV1 cell-line. Interestingly, the kinetics of both viruses not only differed on the clinical signs that they caused and in the virus loads found, but also in the immunological pathways activated throughout the infections. Furthermore, E75CV1 confirmed its protective potential against the homologous E75 virus challenge and allowed the demonstration of poor cross-protection against BA71, thus defining it as heterologous. The in vitro specificity of the CD8(+) T-cells present at the time of lethal challenge showed a clear activation against the homologous virus (E75) but not against BA71. These findings will be of utility for a better understanding of ASFV pathogenesis and for the rational designing of safe and efficient vaccines against this virus.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Imunidade Inata , Vacinas Virais/imunologia , Febre Suína Africana/virologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Suínos , Vacinas Atenuadas/imunologia
6.
Soft Matter ; 10(5): 753-9, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24837682

RESUMO

We used single-molecule tracking experiments to observe the motion of small hydrophobic fluorescent molecules at the interface between water and a solid surface that exhibited periodic chemical patterns. The dynamics were characterized by non-ergodic, continuous time random walk statistics. The step-size distributions displayed enhanced probability of steps to periodic distances, consistent with theoretical predictions for diffusion in an atomic/molecular scale periodic potential. Surprisingly, this general behavior was observed here for surfaces exhibiting characteristic length scales three orders of magnitude larger than atomic/molecular dimensions, and may provide a new way to understand and control solid-liquid interfacial diffusion for molecular targeting applications.

7.
Microbiol Spectr ; 12(2): e0292423, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38206027

RESUMO

Animal shelters, especially in resource-poor countries, bring together pets from different regions and with different backgrounds. The crowding of such animals often results in infectious diseases, such as respiratory infections. This study characterized Staphylococcaceae from diseased and apparently healthy dogs housed in an animal shelter in Kenya, to determine their antibiotic resistance profiles, their genetic relatedness, and the presence of dominant clones. Therefore, bacteria were collected from all 167 dogs present in the shelter in June 2015 and screened for Staphylococcaceae using standard cultivation techniques. In all, 92 strains were isolated from 85 dogs and subsequently sequenced by PacBio long-read sequencing. Strains encompassed nine validated species, while S. aureus (n = 47), S. pseudintermedius (n = 21), and Mammaliicoccus (M.) sciuri (n = 16) were the three most dominant species. Two S. aureus clones of ST15 (CC15) and ST1292 (CC1) were isolated from 7 and 37 dogs, respectively. All 92 strains isolated were tested for their antimicrobial susceptibility by determining the minimum inhibitory concentrations. In all, 86 strains had resistance-associated minimal inhibitory concentrations to at least one of the following antimicrobials: tetracycline, benzylpenicillin, oxacillin, erythromycin, clindamycin, trimethoprim, kanamycin/gentamicin, or streptomycin. Many virulence-encoding genes were detected in the S. aureus strains, other Staphylococcaceae contained a different set of homologs of such genes. The presence of mobile genetic elements, such as plasmids and prophages, known to facilitate the dissemination of virulence- and resistance-encoding genes, was also assessed. The unsuspected high presence of two S. aureus clones in about 50% of dogs suggests dissemination within the shelter and a human source.IMPORTANCEMicrobiological data from sub-Saharan Africa are scarce compared to data from North America, Europe, or Asia, and data derived from dogs, the man's best friend, kept in sub-Saharan Africa are largely missing. This work presents data on Staphylococcaceae mainly isolated from the nasal cavity of dogs stationed at a Kenyan shelter in 2015. We characterized 92 strains isolated from 85 dogs, diseased and apparently healthy ones. The strains isolated covered nine validated species and we determined their phenotypic resistance and characterized their complete genomes. Interestingly, Staphylococcus aureus of two predominant genetic lineages, likely to be acquired from humans, colonized many dogs. We also detected 15 novel sequence types of Mammaliicoccus sciuri and S. pseudintermedius indicating sub-Saharan-specific phylogenetic lineages. The data presented are baseline data that guide antimicrobial treatment for dogs in the region.


Assuntos
Doenças do Cão , Infecções Estafilocócicas , Animais , Cães , Humanos , Staphylococcus aureus/genética , Quênia , Staphylococcaceae , Filogenia , Antibacterianos/farmacologia , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana , Doenças do Cão/microbiologia
8.
Front Immunol ; 13: 1015840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713406

RESUMO

Nanoparticle vaccines usually prime stronger immune responses than soluble antigens. Within this class of subunit vaccines, the recent development of computationally designed self-assembling two-component protein nanoparticle scaffolds provides a powerful and versatile platform for displaying multiple copies of one or more antigens. Here we report the generation of three different nanoparticle immunogens displaying 60 copies of p67C, an 80 amino acid polypeptide from a candidate vaccine antigen of Theileria parva, and their immunogenicity in cattle. p67C is a truncation of p67, the major surface protein of the sporozoite stage of T. parva, an apicomplexan parasite that causes an often-fatal bovine disease called East Coast fever (ECF) in sub-Saharan Africa. Compared to I32-19 and I32-28, we found that I53-50 nanoparticle scaffolds displaying p67C had the best biophysical characteristics. p67C-I53-50 also outperformed the other two nanoparticles in stimulating p67C-specific IgG1 and IgG2 antibodies and CD4+ T-cell responses, as well as sporozoite neutralizing capacity. In experimental cattle vaccine trials, p67C-I53-50 induced significant immunity to ECF, suggesting that the I53-50 scaffold is a promising candidate for developing novel nanoparticle vaccines. To our knowledge this is the first application of computationally designed nanoparticles to the development of livestock vaccines.


Assuntos
Doenças dos Bovinos , Vacinas Protozoárias , Theileria parva , Theileriose , Bovinos , Animais , Antígenos
9.
Viruses ; 14(9)2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36146718

RESUMO

We describe the characterization of an African swine fever genotype IX virus (ASFV-Kenya-IX-1033), which was isolated from a domestic pig in western Kenya during a reported outbreak. This includes the efficiency of virus replication and in vivo virulence, together with genome stability and virulence, following passage in blood macrophages and in a wild boar lung cell line (WSL). The ASFV-Kenya-IX-1033 stock retained its ability to replicate in primary macrophages and retained virulence in vivo, following more than 20 passages in a WSL. At the whole genome level, a few single-nucleotide differences were observed between the macrophage and WSL-propagated viruses. Thus, we propose that the WSL is suitable for the production of live-attenuated ASFV vaccine candidates based on the modification of this wild-type isolate. The genome sequences for ASFV-Kenya-IX-1033 propagated in macrophages and in WSL cells were submitted to GenBank, and a challenge model based on the isolate was developed. This will aid the development of vaccines against the genotype IX ASFV circulating in eastern and central Africa.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Linhagem Celular , Quênia , Nucleotídeos , Sus scrofa , Suínos , Vacinas Atenuadas
10.
J Biol Chem ; 284(48): 32995-3005, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19805547

RESUMO

The core lipopolysaccharide (LPS) of Aeromonas hydrophila AH-3 and Aeromonas salmonicida A450 is characterized by the presence of the pentasaccharide alpha-d-GlcN-(1-->7)-l-alpha-d-Hep-(1-->2)-l-alpha-d-Hep-(1-->3)-l-alpha-d-Hep-(1-->5)-alpha-Kdo. Previously it has been suggested that the WahA protein is involved in the incorporation of GlcN residue to outer core LPS. The WahA protein contains two domains: a glycosyltransferase and a carbohydrate esterase. In this work we demonstrate that the independent expression of the WahA glycosyltransferase domain catalyzes the incorporation of GlcNAc from UDP-GlcNAc to the outer core LPS. Independent expression of the carbohydrate esterase domain leads to the deacetylation of the GlcNAc residue to GlcN. Thus, the WahA is the first described bifunctional glycosyltransferase enzyme involved in the biosynthesis of core LPS. By contrast in Enterobacteriaceae containing GlcN in their outer core LPS the two reactions are performed by two different enzymes.


Assuntos
Aeromonas/metabolismo , Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Glucosamina/metabolismo , Glicosiltransferases/metabolismo , Lipopolissacarídeos/metabolismo , Complexos Multienzimáticos/metabolismo , Acetilglucosamina/metabolismo , Aeromonas/enzimologia , Aeromonas/genética , Aeromonas hydrophila/enzimologia , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Aeromonas salmonicida/enzimologia , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Eletroforese em Gel de Poliacrilamida , Esterases/genética , Glicosiltransferases/genética , Hidrolases/genética , Hidrolases/metabolismo , Hidrólise , Cinética , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Mutação , Homologia de Sequência de Aminoácidos
11.
J Bacteriol ; 191(7): 2228-36, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19151135

RESUMO

Comparison between the lipopolysaccharide (LPS) core structures of Aeromonas salmonicida subsp. salmonicida A450 and Aeromonas hydrophila AH-3 shows great similarity in the inner LPS core and part of the outer LPS core but some differences in the distal part of the outer LPS core (residues ld-Hep, d-Gal, and d-GalNAc). The three genomic regions encoding LPS core biosynthetic genes in A. salmonicida A450, of which regions 2 and 3 have genes identical to those of A. hydrophila AH-3, were fully sequenced. A. salmonicida A450 region 1 showed seven genes: three identical to those of A. hydrophila AH-3, three similar but not identical to those of A. hydrophila AH-3, and one without any homology to any well-characterized gene. A. salmonicida A450 mutants with alterations in the genes that were not identical to those of A. hydrophila AH-3 were constructed, and their LPS core structures were fully elucidated. At the same time, all the A. salmonicida A450 genes identical to those of A. hydrophila AH-3 were used to complement the previously obtained A. hydrophila AH-3 mutants for each of these genes. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. salmonicida A450. Furthermore, hybridization studies with internal probes for the A. salmonicida-specific genes using different A. salmonicida strains (strains of different subspecies or atypical strains) showed a unique or prevalent LPS core type, which is the one fully characterized for A. salmonicida A450.


Assuntos
Aeromonas salmonicida/genética , Lipopolissacarídeos/biossíntese , Proteômica , Aeromonas hydrophila/química , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Aeromonas salmonicida/química , Aeromonas salmonicida/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Carboidratos , Teste de Complementação Genética , Genoma Bacteriano , Lipopolissacarídeos/química , Lipopolissacarídeos/genética , Dados de Sequência Molecular
12.
BMC Public Health ; 9: 8, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19134205

RESUMO

BACKGROUND: Worldwide, chronic obstructive pulmonary disease (COPD) is the fourth cause of death. Exacerbations have a negative impact on the prognosis of COPD and the frequency and severity of these episodes are associated with a higher patient mortality. Exacerbations are the first cause of decompensation, hospital admission and death in COPD. The incidence of exacerbations has mainly been estimated in populations of patients with moderate-severe COPD requiring hospital care. However, little is known regarding the epidemiology of exacerbations in patients with less severe COPD forms. It is therefore possible that a high number of these less severe forms of exacerbations are underdiagnosed and may, in the long-term, have certain prognostic importance for the COPD evolution. The aim of this study was to know the incidence and risk factors associated with exacerbations in patients with COPD in primary care. METHODS AND DESIGN: A prospective, observational, 3-phase, multicentre study will be performed involving: baseline evaluation, follow up and final evaluation. A total of 685 smokers or ex-smokers from 40 to 80 years of age with COPD, without acute respiratory disease or any other long-term respiratory disease will be randomly selected among the population assigned to 21 primary care centres. The diagnosis of COPD and its severity will be confirmed by spirometry. Information regarding the baseline situation, quality of life and exposure to contaminants or other factors potentially related to exacerbations will be collected. A group of 354 patients with confirmed COPD of varying severity will be followed for one year through monthly telephone calls and daily reporting of symptoms with the aim of detecting all the exacerbations which occur. These patients will be evaluated again at the end of the study and the incidence of exacerbations and associated relative risks will be estimated by negative binomial regression. DISCUSSION: The results will be relevant to provide knowledge about natural history of the initial phases of the COPD and the impact and incidence of the exacerbations on the patients with mild-moderate forms of the disease. These data may be important to know the milder forms of exacerbation which are often silent or very little expressed clinically.


Assuntos
Progressão da Doença , Atenção Primária à Saúde , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Adulto , Distribuição por Idade , Idoso , Estudos de Coortes , Terapia Combinada , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Observação , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/terapia , Testes de Função Respiratória , Medição de Risco , Índice de Gravidade de Doença , Distribuição por Sexo , Fumar/efeitos adversos , Espanha/epidemiologia , Taxa de Sobrevida , Fatores de Tempo
13.
Sci Rep ; 9(1): 13616, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541124

RESUMO

Most of the microorganisms living in a symbiotic relationship in different animal body sites (microbiota) reside in the gastrointestinal tract (GIT). Several studies have shown that the microbiota is involved in host susceptibilities to pathogens. The fecal microbiota of domestic and wild suids was analyzed. Bacterial communities were determined from feces obtained from domestic pigs (Sus scrofa) raised under different conditions: specific-pathogen-free (SPF) pigs and domestic pigs from the same bred, and indigenous domestic pigs from a backyard farm in Kenya. Secondly, the fecal microbiota composition of the African swine fever (ASF) resistant warthogs (Phacochoerus africanus) from Africa and a European zoo was determined. African swine fever (ASF) is a devastating disease for domestic pigs. African animals showed the highest microbial diversity while the SPF pigs the lowest. Analysis of the core microbiota from warthogs (resistant to ASF) and pigs (susceptible to ASF) showed 45 shared OTUs, while 6 OTUs were exclusively present in resistant animals. These six OTUs were members of the Moraxellaceae family, Pseudomonadales order and Paludibacter, Anaeroplasma, Petrimonas, and Moraxella genera. Further characterization of these microbial communities should be performed to determine the potential involvement in ASF resistance.


Assuntos
Fezes/microbiologia , Suínos/genética , Suínos/microbiologia , Febre Suína Africana/genética , Febre Suína Africana/microbiologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Animais Selvagens/genética , Animais Selvagens/microbiologia , Suscetibilidade a Doenças , Trato Gastrointestinal , Quênia , Microbiota/genética , Sus scrofa/genética , Sus scrofa/microbiologia
14.
J Bacteriol ; 190(9): 3176-84, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18310345

RESUMO

By the isolation of three different Aeromonas hydrophila strain AH-3 (serotype O34) mutants with an altered lipopolysaccharide (LPS) migration in gels, three genomic regions encompassing LPS core biosynthesis genes were identified and characterized. When possible, mutants were constructed using each gene from the three regions, containing seven, four, and two genes (regions 1 to 3, respectively). The mutant LPS core structures were elucidated by using mass spectrometry, methylation analysis, and comparison with the full core structure of an O-antigen-lacking AH-3 mutant previously established by us. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. hydrophila AH-3. The three regions and the genes contained are in complete agreement with the recently sequenced genome of A. hydrophila ATCC 7966. The functions of the A. hydrophila genes waaC in region 3 and waaF in region 2 were completely established, allowing the genome annotations of the two heptosyl transferase products not previously assigned. Having the functions of all genes involved with the LPS core biosynthesis and most corresponding single-gene mutants now allows experimental work on the role of the LPS core in the virulence of A. hydrophila.


Assuntos
Aeromonas hydrophila/genética , Genes Bacterianos , Antígenos O/biossíntese , Aeromonas hydrophila/metabolismo , Sequência de Carboidratos , Clonagem Molecular , Ordem dos Genes , Teste de Complementação Genética , Glicosiltransferases/genética , Dados de Sequência Molecular , Estrutura Molecular , Família Multigênica , Mutação , Antígenos O/química , Antígenos O/genética , Análise de Sequência de DNA
15.
Vaccine ; 36(11): 1389-1397, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29429808

RESUMO

East Coast fever (ECF) is a lymphoproliferative disease caused by the tick-transmitted protozoan parasite Theileria parva. ECF is one of the most serious cattle tick-borne diseases in Sub-Saharan Africa. We have previously demonstrated that three doses of the C-terminal part of the sporozoite protein p67 (p67C) adjuvanted with ISA206VG confers partial protection against ECF at a herd level. We have tested the efficacy of two doses of this experimental vaccine, as reducing the vaccination regimen would facilitate its deployment in the field. We reconfirm that three antigen doses gave a significant level of protection to severe disease (46%, ECF score < 6) when compared with the control group, while two doses did not (23%). Animals receiving three doses of p67C developed higher antibody titers and CD4+ T-cell proliferation indices, than those which received two doses. A new panel of immune parameters were tested in order to identify factors correlating with protection: CD4+ proliferation index, total IgG, IgG1, IgG2 and IgM half maximal titers and neutralization capacity of the sera with and without complement. We show that some of the cellular and humoral immune responses provide preliminary correlates of protection.


Assuntos
Adjuvantes Imunológicos , Antígenos de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Theileria/imunologia , Theileriose/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Especificidade de Anticorpos/imunologia , Bovinos , Imunização , Imunização Secundária , Vacinas Protozoárias/administração & dosagem , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
16.
Ticks Tick Borne Dis ; 7(4): 549-64, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26972687

RESUMO

Tremendous progress has been made over the last ten years on East Coast fever (ECF) research. Publication of a reference genome sequence of Theileria parva, the causative agent of ECF, has led to a more thorough characterization of the genotypic and antigenic diversity of the pathogen. It also facilitated identification of antigens that are targets of bovine major histocompatibility complex class I restricted cytotoxic T-lymphocytes (CTLs), induced by a live parasite-based infection and treatment method (ITM) vaccine. This has led to improved knowledge of epitope-specific T-cell responses to ITM that most likely contribute to the phenomenon of strain-specific immunity. The Muguga cocktail ITM vaccine, which provides broad-spectrum immunity to ECF is now a registered product in three countries in eastern Africa. Effort is directed at improving and scaling up the production process to make this vaccine more widely available on a commercial basis in the region. Meanwhile, research to develop a subunit vaccine based on parasite neutralizing antibodies and CTLs has been revived through convening of a research consortium to develop proof-of-concept for a next generation vaccine. Many new scientific and technical advances are facilitating this objective. Hence, the next decade promises even more progress toward an improved control of ECF.


Assuntos
Vacinas Protozoárias/imunologia , Linfócitos T/imunologia , Theileria parva/imunologia , Theileriose/epidemiologia , Theileriose/prevenção & controle , África Oriental , Animais , Antígenos de Protozoários/imunologia , Bovinos , Vacinas Protozoárias/administração & dosagem
17.
PLoS One ; 10(11): e0142889, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618713

RESUMO

The strain BA71V has played a key role in African swine fever virus (ASFV) research. It was the first genome sequenced, and remains the only genome completely determined. A large part of the studies on the function of ASFV genes, viral transcription, replication, DNA repair and morphogenesis, has been performed using this model. This avirulent strain was obtained by adaptation to grow in Vero cells of the highly virulent BA71 strain. We report here the analysis of the genome sequence of BA71 in comparison with that of BA71V. They possess the smallest genomes for a virulent or an attenuated ASFV, and are essentially identical except for a relatively small number of changes. We discuss the possible contribution of these changes to virulence. Analysis of the BA71 sequence allowed us to identify new similarities among ASFV proteins, and with database proteins including two ASFV proteins that could function as a two-component signaling network.


Assuntos
Vírus da Febre Suína Africana/genética , Genoma Viral , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/patogenicidade , Animais , Sequência de Bases , Células Cultivadas , Chlorocebus aethiops , Dados de Sequência Molecular , Suínos , Células Vero , Virulência/genética
18.
Virus Res ; 173(1): 180-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313935

RESUMO

African swine fever is still one of the major viral diseases of swine for which a commercial vaccine is lacking. For the design and development of such preventive products, researchers involved in African swine fever virus (ASFV) vaccinology need standardized challenge protocols and well characterized clinical, pathological and immunological responses of inbreed and outbreed pigs to different viral strains and vaccine-like products. The different approaches used should be assessed by immunologist, virologist and pathologist expertise. The main objectives of this guideline are to (1) briefly contextualize the clinical and pathological ASFV presentations focusing on points that are critical for pathogenesis, (2) provide recommendations concerning the analysis of clinical, gross and microscopic observations and (3) standardize the pathological report, the terminology employed and the evaluation of the severity of the lesions between the ASFV research groups for comparing inter-group data. The presented guidelines establish new approaches to integrate such relevant pathological data with virological and immunological testing, giving support to the global interpretation of the findings in the future experiments of ASFV-related vaccinology and immunology.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/patologia , Patologia/métodos , Patologia/normas , Animais , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Guias como Assunto , Suínos , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação
19.
Virus Res ; 173(1): 110-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23201582

RESUMO

African swine fever virus (ASFV) infection usually results in an acute haemorrhagic disease with a mortality rate approaching 100% in domestic pigs. However, pigs can survive infection with less-virulent isolates of ASFV and may become chronically infected. Surviving animals are resistant to challenge with homologous or, in some cases, closely related isolates of the virus indicating that pigs can develop protective immunity against ASFV. During asymptomatic, non-virulent ASFV infections natural killer cell activity increases in pigs, suggesting this cell type plays a role in ASFV immunity. Furthermore, depletion of CD8(+) lymphocytes from ASFV immune pigs demolishes protective immunity against related virulent viruses. This suggests that ASFV specific antibody alone is not sufficient for protection against ASFV infection and that there is an important role for the CD8(+) lymphocyte subset in ASFV protective immunity. These results were supported by DNA immunization studies, demonstrating a correlation between the protection afforded against lethal challenge and the detection of a large number of vaccine-induced antigen-specific CD8(+) T-cells. Peripheral blood mononuclear cells (PBMCs) from ASF immune pigs protected from clinical disease show higher proportions of ASFV specific CD4(+)CD8(high+) double positive cytotoxic T cells than PBMCs from ASF immune but clinically diseased pig. The frequency of ASFV specific IFNγ producing T cells induced by immunization correlates to the degree of protection from ASFV challenge, and this may prove to be a useful indicator of any potential cross-protection against heterologous ASFV isolates.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Imunidade Celular , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , DNA Viral/química , DNA Viral/genética , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Suínos , Linfócitos T Citotóxicos/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
20.
PLoS One ; 7(9): e40942, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049728

RESUMO

The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8(+) T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8(+) T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Antígenos Virais/imunologia , DNA Viral/imunologia , Vacinação , Vacinas de DNA/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Febre Suína Africana/imunologia , Febre Suína Africana/mortalidade , Febre Suína Africana/virologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Células Cultivadas , DNA Viral/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Plasmídeos/genética , Plasmídeos/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Taxa de Sobrevida , Suínos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Ubiquitina/genética , Ubiquitina/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Sintéticas , Proteínas Virais/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA