Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prehosp Disaster Med ; 38(5): 617-621, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37787410

RESUMO

INTRODUCTION: In recent years, unmanned aerial vehicles (UAVs) have been increasingly used for medical surveillance purposes in mass-gathering events. No studies have investigated the reliability of live video transmission from UAVs for accurate identification of distressed race participants in need of medical attention. The aim of this study was to determine the proportion of time during which live medical surveillance UAV video feed was successfully transmitted and considered of sufficient quality to identify acute illness in runners participating in the 2022 Montreal Marathon (Canada). METHODS: Four UAVs equipped with high-resolution cameras were deployed at two pre-defined high-risk areas for medical incidents located within the last 500 meters of the race. The video footage was transmitted in real-time during four consecutive hours to a remote viewing station where four research assistants monitored it on large screens. Interruptions in live feed transmission and moments with inadequate field of view (FOV) on runners were documented. RESULTS: On September 25, 2022, a total of 6,916 athletes ran during the Montreal Marathon and Half Marathon. Out of the eight hours of video footage analyzed (four hours per high-risk area), 91.7% represented uninterrupted live video feed with an adequate view of the runners passing through the high-risk areas. There was a total of 18 live feed interruptions leading to a total interruption time of 22 minutes and 19 seconds (median interruption time of 32 seconds) and eight distinct moments with inadequate FOV on runners which accounted for 17 minutes and 33 seconds (median of 1 minute 47 seconds per moments with inadequate FOV). Active surveillance of drone-captured footage allowed early identification of two race participants in need of medical attention. Appropriate resources were dispatched, and UAV repositioning allowed for real-time viewing of the medical response. CONCLUSION: Live video transmission from UAVs for medical surveillance of runners passing through higher risk segments of a marathon for four consecutive hours is feasible. Live feed interruptions and moments with inadequate FOV could be minimized through practice and additional equipment redundancy.


Assuntos
Corrida de Maratona , Dispositivos Aéreos não Tripulados , Humanos , Estudos de Viabilidade , Reprodutibilidade dos Testes , Canadá
2.
Sci Signal ; 14(675)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758060

RESUMO

Electrostatic interactions regulate many aspects of T cell receptor (TCR) activity, including enabling the dynamic binding of the TCR-associated CD3ε and CD3ζ chains to anionic lipids in the plasma membrane to prevent spontaneous phosphorylation. Substantial changes in the electrostatic potential of the plasma membrane occur at the immunological synapse, the interface between a T cell and an antigen-presenting cell. Here, we investigated how the electrostatic interactions that promote dynamic membrane binding of the TCR-CD3 cytoplasmic domains are modulated during signaling and affect T cell activation. We found that Ca2+-dependent activation of the phosphatidylserine scramblase TMEM16F, which was previously implicated in T cell activation, reduced the electrostatic potential of the plasma membrane during immunological synapse formation by locally redistributing phosphatidylserine. This, in turn, increased the dissociation of bystander TCR-CD3 cytoplasmic domains from the plasma membrane and enhanced TCR-dependent signaling and consequently T cell activation. This study establishes the molecular basis for the role of TMEM16F in bystander TCR-induced signal amplification and identifies enhancement of TMEM16F function as a potential therapeutic strategy for promoting T cell activation.


Assuntos
Anoctaminas/metabolismo , Complexo CD3/metabolismo , Membrana Celular/metabolismo , Sinapses Imunológicas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Animais , Anoctaminas/genética , Cálcio/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Mutação , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA