Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Tumour Biol ; 39(6): 1010428317702649, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28639913

RESUMO

We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Ácido Fólico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Inibidoras de Apoptose/genética , Neoplasias Hepáticas/tratamento farmacológico , Animais , Apoptose/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Ácido Fólico/genética , Regulação Neoplásica da Expressão Gênica , Glutationa/metabolismo , Proteínas de Choque Térmico/antagonistas & inibidores , Células Hep G2 , Homeostase , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxirredução , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismo , Survivina
2.
Oncol Lett ; 12(5): 3723-3730, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27895723

RESUMO

Cisplatin is commonly recognized as a DNA-damaging drug; however, its versatile antitumor effects have been demonstrated to extend beyond this narrow functional attribute. The present study determined how cisplatin regulates alternative pathways and transcription factors to exert its additional antitumor actions. Cisplatin was observed to be able to trigger an endoplasmic reticulum stress response through aggravated nitrosative stress coupled to perturbed mitochondrial calcium (Ca2+) homeostasis, which substantially downregulated glucose-regulated protein (GRP) 78 expression by suppressing the cleavage of activating transcription factor (ATF) 6α (90 kDa) to its active 50 kDa subunit. Concomitantly, the ATF4-ATF3-C/emopamil binding protein homologous protein axis was activated by cisplatin, which triggered cellular glutathione (GSH) depletion by strongly inhibiting γ-glutamylcysteine synthetase heavy chain (γ-GCSh), a key enzyme in GSH biosynthesis. The present study also demonstrated that cisplatin substantially inhibited ß-catenin, causing a marked downregulation of survivin and B-cell lymphoma (Bcl)-2. Taken together, the present results uncovered a novel mechanism of cisplatin that could simultaneously trigger the inhibition of three prominent antiapoptotic effector molecules (Bcl-2, survivin and GRP78) and effectively promote GSH depletion by inhibiting γ-GCSh. These newly discovered functional attributes of cisplatin can provide an avenue for novel combined therapeutic strategies to kill hepatocellular carcinoma cells effectively.

3.
Life Sci ; 136: 7-12, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26135626

RESUMO

AIMS: This study delineated the mechanisms of paclitaxel (PTX) assistance in overcoming radioresistance in hepatoma and human lung adenocarcinoma (HLAC) cells. MAIN METHODS: The TUNEL assay was used as an index of radiosensitivity, and the MTT assay assessed the efficacy of various combined PTX/RT treatments. The efficacy of PTX disruptions of hypoxia-inducible factor-1 alpha (HIF-1α) was assessed using Western blotting. KEY FINDINGS: Normoxically overexpressed HIF-1α in hepatoma J5 cells was mechanistically linked to activation of the bFGF/PI3K/Akt pathway because the viability of these cells was strongly inhibited by either Akt inhibitors or an HIF-1α inhibitor. All of the cell lines used were extremely sensitive to PTX, and these effects also correlated excellently with HIF-1α suppression. We designed five combined radiation-PTX protocols of varying dose duration and treatment sequences against CL1-1 cells based on the gathered data. Pretreatment of CL1-1 cells with PTX (100nM) for 24h before irradiation (2.5Gy) was the best combined protocol to achieve maximum radiosensitizing effects. SIGNIFICANCE: Our data clearly indicate that PTX pretreatment is an effective radiosensitizing procedure against HIF-1α-expressing hepatoma and HLAC cells, which are constitutively endowed with radioresistance.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Paclitaxel/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Adenocarcinoma , Adenocarcinoma de Pulmão , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas , Neoplasias Pulmonares , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA