Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Entropy (Basel) ; 26(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667891

RESUMO

In the theory of special relativity, energy can be found in two forms: kinetic energy and rest mass. The potential energy of a body is actually stored in the form of rest mass, the interaction energy too, but temperature is not. Information acquired about a dynamical system can be potentially used to extract useful work from it. Hence, the "mass-energy-information equivalence principle" that has been recently proposed. In this paper, it is first recalled that for a thermodynamic system made of non-interacting entities at constant temperature, the internal energy is also constant. So, the energy involved in a variation in entropy (TΔS) differs from a change in the potential energy stored or released and cannot be associated to a corresponding variation in mass of the system, even if it is expressed in terms of the quantity of information. This debate gives us the opportunity to deepen the notion of entropy seen as a quantity of information, to highlight the difference between logical irreversibility (a state-dependent property) and thermodynamical irreversibility (a path-dependent property), and to return to the nature of the link between energy and information that is dynamical.

2.
Phys Chem Chem Phys ; 25(41): 28150-28161, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818652

RESUMO

Among classical nanoporous oxide membranes, anodic aluminum oxide (AAO) membranes, made of non-connected, parallel and ordered nanochannels, are very interesting nanoporous model systems widely used for multiple applications. Since most of these applications involve local phenomena at the nanochannel surface, the fine description of the electrical surface behavior in aqueous solution is thus of primordial interest. Here, we use an original experimental approach combining several electrokinetic techniques (tangential and transverse streaming potential as well as electrophoretic mobility experiments) to measure the ζ-potential and determine the surface isoelectric points (IEPs) of several AAOs having different characteristic sizes and compositions. Using such an approach, all the different surfaces available in AAOs can be probed: outer surfaces (top and bottom planes), pore wall surfaces (i.e., inner surfaces) and surfaces created by the grinding of the AAOs. We find clear IEP differences between the outer, pore wall and ground surfaces and discuss these in terms of nanochannel and surface morphology (curvature and roughness) and of modifications of the chemical environment of the surface hydroxyl groups. These results highlight the heterogeneities between the different surfaces of these AAO membranes and emphasize the necessity to combine complementary electrokinetic techniques to properly understand the material, an approach which can be extended to many nanoporous systems.

3.
Entropy (Basel) ; 25(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37628185

RESUMO

Landauer's principle states that the logical irreversibility of an operation, such as erasing one bit, whatever its physical implementation, necessarily implies its thermodynamical irreversibility. In this paper, a very simple counterexample of physical implementation (that uses a two-to-one relation between logic and thermodynamic states) is given that allows one bit to be erased in a thermodynamical quasistatic manner (i.e., one that may tend to be reversible if slowed down enough).

4.
J Am Chem Soc ; 141(36): 14021-14025, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31422657

RESUMO

The binding of imidazolium salts to cucurbit[8]uril, CB[8], triggers a stepwise self-assembly process with semiflexible polymer chains and crystalline nanostructures as early- and late-stage species, respectively. In such a process, which involves the crystallization of the host-guest complexes, the guest plays a critical role in directing self-assembly toward desirable morphologies. These include platelet-like aggregates and two-dimensional (2D) fibers, which, moreover, exhibit viscoelastic and lyotropic properties. Our observations provide a deeper understanding of the self-assembly of CB[8] complexes, with fundamental implications in the design of functional 2D systems and crystalline materials.

5.
Langmuir ; 35(7): 2692-2701, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30719921

RESUMO

During evaporative drying of a colloidal dispersion, the structural behavior at the air-dispersion interface is of particular relevance to the understanding of the consolidation mechanism and the final structural and mechanical properties of the porous media. The drying interface constitutes the region of initial drying stress that, when accumulated over a critical thickness, leads to crack formation. This work presents an experimental study of top-down drying of colloidal silica dispersions with three different sizes (radius 5, 8, and 13 nm). Using specular neutron reflectivity, we focus on the structural evolution at the free drying front of the dispersion with a macroscopic drying surface and demonstrate the existence of a thick concentrated surface layer induced by heterogeneous evaporation. The reflectivity profile contains a strong structure peak due to scattering from particles in the interfacial region, from which the interparticle distance is deduced. A notable advantage of these measurements is the direct extraction of the corresponding dispersion concentration from the critical total reflection edge, providing a straightforward access to a structure-concentration relation during the drying process. The bulk reservoir of this experimental configuration renders it possible to verify the evaporation-diffusion balance to construct the surface layer and also to check reversibility of particle ordering. We follow the structural evolution of this surface layer from a sol to a soft wet-gel that is the precursor of a fragile skin and the onset of significant particle aggregation that precedes formation of the wet-crust. Separate complementary measurements on the structural evolution in the bulk dispersion are also carried out by small-angle neutron scattering, where the particle concentration is also extracted directly from the experimental curves. The two sets of data reveal similar structural evolution with concentration at the interface and in the bulk and an increase in the degree of ordering with the particle size.

6.
Langmuir ; 33(40): 10598-10605, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28872877

RESUMO

The formation of supported lipid bilayers (SLB) on hydrophilic substrates through the method of unilamelar vesicle fusion is used routinely in a wide range of biophysical studies. In an effort to control and better understand the fusion process on the substrate, many experimental studies employing different techniques have been devoted to the elucidation of the fusion mechanism. In the present work, we follow the kinetics of membrane formation using time-resolved (TR) neutron reflectivity, focusing on the structural changes near the solid/liquid interface. A clear indication of stacked bilayer structure is observed during the intermediate phase of SLB formation. Adsorbed lipid mass decrease is also measured in the final stage of the process. We have found that it is essential for the analysis of the experimental results to treat the shape of adsorbed lipid vesicles on an attractive substrate theoretically. The overall findings are discussed in relation to proposed fusion mechanisms from the literature, and we argue that our observations favor a model involving enhanced adhesion of incoming vesicles on the edges of already-formed bilayer patches.


Assuntos
Nêutrons , Interações Hidrofóbicas e Hidrofílicas , Cinética , Bicamadas Lipídicas , Fusão de Membrana , Fatores de Tempo
7.
J Am Chem Soc ; 135(32): 11760-3, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23879174

RESUMO

Herein we report the photocontrol of cucurbit[8]uril (CB[8])-mediated supramolecular polymerization of azobenzene-containing monomers. The CB[8] polymers were characterized both in solution and in the solid state. These host-guest complexes can be reversibly switched between highly thermostable photostationary states. Moreover, a remarkable stabilization of Z-azobenzene was achieved by CB[8] complexation, allowing for structural characterization in the solid state.

8.
Langmuir ; 27(13): 7980-5, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21650166

RESUMO

Small-angle neutron scattering (SANS), contrast-matching SANS, and nitrogen adsorption have been utilized to investigate the confined ionic liquid (IL) [bmim][PF(6)] phase in ordered mesoporous silica MCM-41 and SBA-15. The results suggest that the pores of SBA-15 are completely filled with IL whereas a small fraction of the pore volume, the pore "core", of MCM-41 is empty. The contrast-matching SANS measurements confirm the enhanced solubility of water in IL. In addition, they provide strong evidence that water does not enter the empty pore core of MCM-41, possibly because of the preferred orientation of the IL molecules in the adsorbed layer.

9.
Pharm Res ; 28(7): 1631-42, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21374102

RESUMO

PURPOSE: Angiogenesis plays a critical role in tumor growth. This phenomena is regulated by numerous mediators such as vascular endothelial growth factor (VEGF). CBO-P11, a cyclo-peptide, has proven to specifically bind to receptors of VEGF and may be used as targeting ligand for tumor angiogenesis. We herein report the design of novel nanoparticles conjugated to CBO-P11 in order to specifically target tumor site. METHODS: The conjugation of CBO-P11 on the surface of poly(vinylidene fluoride) (PVDF) nanoparticles was investigated using the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition known as "click" reaction. CBO-P11 was modified with a near-infrared cyanine dye bearing an alkyne function, allowing both "click" coupling on azido-modified nanoparticles and fluorescence labelling. Each step of this nanodevice construction was judiciously performed in aqueous solution and successfully characterized. The cytotoxicity of nanoparticles was evaluated in human brain endothelial cell line and their affinity for VEGF receptors was determined via fluorescence-based uptake assays on porcine aortic endothelial cell line. RESULTS: Nanoparticles were found to be spherical, dense, monodisperse and stable. No cytotoxicity was observed after four days of incubation demonstrating the biocompatibility of nanoparticles. Fluorescence highlighted the specific interaction of these functionalized nanoparticles for VEGF receptors, suggesting that the targeting peptide bioactivity was retained. CONCLUSIONS: These results demonstrate the potential of these functionalized nanoparticles for targeting tumor angiogenesis and their possible use as multifunctional platform for cancer treatment if coupled with therapeutic agents.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Peptídeos/metabolismo , Polivinil/química , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Animais , Linhagem Celular , Química Click , Fatores de Crescimento Endotelial/química , Humanos , Estrutura Molecular , Neovascularização Patológica/tratamento farmacológico , Peptídeos Cíclicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Suínos
10.
Phys Chem Chem Phys ; 13(13): 6260-9, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21359348

RESUMO

Small-angle neutron scattering proved that molecules in aqueous solutions of pyridine, 2-methylpyridine and 2,6-dimethylpyridine form clusters. The clusters are dynamic aggregates consisting of hydrogen-bonded water-amine complexes. Strengthening of the hydrogen bonds between water and amine molecules due to the methyl groups in the ortho position in the pyridine ring makes the structures more stable, as was evidenced by relatively long times of the structural relaxation. The strong intermolecular forces affect the thermal expansion of the systems. No aggregates similar to those in aqueous systems are present in the methanolic ones. That points to the crucial role of water in the molecular clustering. A molecule of methanol, although capable of hydrogen bonding with the amines, cannot participate in larger structures because of the lack of protons that could form the enhanced network. Thus, even if the amine-methanol complexes occur, they are incapable of further association. It was shown that the co-operative nature of hydrogen bonds and the propensity of water to association are the main factors that determine the properties of aqueous systems.

11.
Nanoscale Adv ; 3(17): 4979-4989, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36132337

RESUMO

When a lipid membrane approaches a material/nanomaterial, nonspecific adhesion may occur. The interactions responsible for nonspecific adhesion can either preserve the membrane integrity or lead to its disruption. Despite the importance of the phenomenon, there is still a lack of clear understanding of how and why nonspecific adhesion may originate different resulting scenarios and how these interaction scenarios can be investigated. This work aims at bridging this gap by investigating the role of the interplay between cationic electrostatic and hydrophobic interactions in modulating the membrane stability during nonspecific adhesion phenomena. Here, the stability of the membrane has been studied employing anisotropic nanoprobes in zwitterionic lipid membranes with the support of coarse-grained molecular dynamics simulations to interpret the experimental observations. Lipid membrane electrical measurements and nanoscale visualization in combination with molecular dynamics simulations revealed the phenomena driving nonspecific adhesion. Any interaction with the lipidic bilayer is defect-mediated involving cationic electrostatically driven lipid extraction and hydrophobically-driven chain protrusion, whose interplay determines the existence of a thermodynamic optimum for the membrane structural integrity. These findings unlock unexplored routes to exploit nonspecific adhesion in lipid membranes. The proposed platform can act as a straightforward probing tool to locally investigate interactions between synthetic materials and lipid membranes for the design of antibacterials, antivirals, and scaffolds for tissue engineering.

12.
Front Chem ; 9: 631277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017815

RESUMO

The myelin sheath-a multi-double-bilayer membrane wrapped around axons-is an essential part of the nervous system which enables rapid signal conduction. Damage of this complex membrane system results in demyelinating diseases such as multiple sclerosis (MS). The process in which myelin is generated in vivo is called myelination. In our study, we investigated the adhesion process of large unilamellar vesicles with a supported membrane bilayer that was coated with myelin basic protein (MBP) using time-resolved neutron reflectometry. Our aim was to mimic and to study the myelination process of membrane systems having either a lipid-composition resembling that of native myelin or that of the standard animal model for experimental autoimmune encephalomyelitis (EAE) which represents MS-like conditions. We were able to measure the kinetics of the partial formation of a double bilayer in those systems and to characterize the scattering length density profiles of the initial and final states of the membrane. The kinetics could be modeled using a random sequential adsorption simulation. By using a free energy minimization method, we were able to calculate the shape of the adhered vesicles and to determine the adhesion energy per MBP. For the native membrane the resulting adhesion energy per MBP is larger than that of the EAE modified membrane type. Our observations might help in understanding myelination and especially remyelination-a process in which damaged myelin is repaired-which is a promising candidate for treatment of the still mostly incurable demyelinating diseases such as MS.

13.
ACS Macro Lett ; 9(6): 794-798, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35648528

RESUMO

It remains a great experimental challenge to obtain quantitative information on the polyelectrolyte (PE) behavior confined in charged nanoporous materials. Here, we propose an original approach using transverse streaming potential measurements (TSPMs), an efficient technique providing information on the electrical surface properties of nanoporous materials through the ζ-potential determination. We conduct TSPMs within the thin double-layer approximation on a model system composed of individual nanochannels, a nanoporous anodic aluminum oxide (AAO) membrane, filled with a well-known PE, sodium polystyrenesulfonate (NaPSS). We demonstrate that TSPMs can provide the AAO ζ-potential under different experimental conditions and monitor the PE penetration in AAO with positive or negative surface charge. On the positive surface, the PE irreversibly adsorbs, while it does not when the surface is negatively charged, indicating the electrostatic nature of the PE adsorption. In the context of experimental limitations to investigate PE behavior on concave surfaces, this study shows that the TSPM is suitable to extract quantitative information and can be exploited to gain an understanding of the PE adsorption and desorption in a confined medium.

14.
Biomacromolecules ; 9(2): 487-93, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18211003

RESUMO

The supramolecular organization of particles composed of heteroxylans (HX) and synthetic lignin (dehydrogenation polymer, DHPs) was studied by light scattering (LS), atomic force microscopy (AFM), and fluorescent probes. Results from static and quasi-elastic light scattering indicate a dense core surrounded by a soft corona. Such organization is also supported by AFM images of the particles that display Gaussian height profiles when a low tapping force is applied, whereas the shape of the profile obtained at a higher mechanical solicitation is irregular and sharp due to deformation of the particles resulting from the tip indentation. This suggests a difference in mechanical behavior between the inner and outer parts of the particles. The formation of local chemical heterogeneities was demonstrated by use of two fluorescent polarity probes (pyrene and methyl-amino-pyrene) to be induced by the core-corona organization.


Assuntos
Lignina/síntese química , Nanopartículas/química , Polímeros/química , Xilanos/química , Hidrogenação , Lignina/química , Microscopia de Força Atômica/métodos , Polímeros/síntese química , Xilanos/síntese química
15.
Sci Rep ; 7(1): 2241, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28533551

RESUMO

Ionic Liquids (ILs) are a specific class of molecular electrolytes characterized by the total absence of co-solvent. Due to their remarkable chemical and electrochemical stability, they are prime candidates for the development of safe and sustainable energy storage systems. The competition between electrostatic and van der Waals interactions leads to a property original for pure liquids: they self-organize in fluctuating nanometric aggregates. So far, this transient structuration has escaped to direct clear-cut experimental assessment. Here, we focus on a imidazolium based IL and use particle-probe rheology to (i) catch this phenomenon and (ii) highlight an unexpected consequence: the self-diffusion coefficient of the cation shows a one order of magnitude difference depending whether it is inferred at the nanometric or at the microscopic scale. As this quantity partly drives the ionic conductivity, such a peculiar property represents a strong limiting factor to the performances of ILs-based batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA