Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(D1): D579-D589, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31647104

RESUMO

Large-scale genome sequencing and the increasingly massive use of high-throughput approaches produce a vast amount of new information that completely transforms our understanding of thousands of microbial species. However, despite the development of powerful bioinformatics approaches, full interpretation of the content of these genomes remains a difficult task. Launched in 2005, the MicroScope platform (https://www.genoscope.cns.fr/agc/microscope) has been under continuous development and provides analysis for prokaryotic genome projects together with metabolic network reconstruction and post-genomic experiments allowing users to improve the understanding of gene functions. Here we present new improvements of the MicroScope user interface for genome selection, navigation and expert gene annotation. Automatic functional annotation procedures of the platform have also been updated and we added several new tools for the functional annotation of genes and genomic regions. We finally focus on new tools and pipeline developed to perform comparative analyses on hundreds of genomes based on pangenome graphs. To date, MicroScope contains data for >11 800 microbial genomes, part of which are manually curated and maintained by microbiologists (>4500 personal accounts in September 2019). The platform enables collaborative work in a rich comparative genomic context and improves community-based curation efforts.


Assuntos
Genes Arqueais , Genes Bacterianos , Genômica/métodos , Anotação de Sequência Molecular/métodos , Software , Bases de Dados Genéticas , Redes e Vias Metabólicas
2.
Brief Bioinform ; 20(4): 1071-1084, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28968784

RESUMO

The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources.


Assuntos
Genoma Microbiano , Genômica/métodos , Anotação de Sequência Molecular/métodos , Software , Biologia Computacional , Gráficos por Computador , Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Compostos Químicos , Genômica/estatística & dados numéricos , Internet , Redes e Vias Metabólicas/genética , Fenômenos Microbiológicos , Anotação de Sequência Molecular/estatística & dados numéricos , Interface Usuário-Computador
3.
Nucleic Acids Res ; 45(D1): D517-D528, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899624

RESUMO

The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations.


Assuntos
Bases de Dados Genéticas , Metagenoma , Metagenômica/métodos , Microbiota/genética , Biologia Computacional/métodos , Evolução Molecular , Metaboloma , Metabolômica/métodos , Família Multigênica , Polimorfismo de Nucleotídeo Único , Software
4.
Nucleic Acids Res ; 41(Database issue): D636-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193269

RESUMO

MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users to perfect and improve the understanding of gene functions. MicroScope (http://www.genoscope.cns.fr/agc/microscope) combines tools and graphical interfaces to analyse genomes and to perform the manual curation of gene annotations in a comparative context. Since its first publication in January 2006, the system (previously named MaGe for Magnifying Genomes) has been continuously extended both in terms of data content and analysis tools. The last update of MicroScope was published in 2009 in the Database journal. Today, the resource contains data for >1600 microbial genomes, of which ∼300 are manually curated and maintained by biologists (1200 personal accounts today). Expert annotations are continuously gathered in the MicroScope database (∼50 000 a year), contributing to the improvement of the quality of microbial genomes annotations. Improved data browsing and searching tools have been added, original tools useful in the context of expert annotation have been developed and integrated and the website has been significantly redesigned to be more user-friendly. Furthermore, in the context of the European project Microme (Framework Program 7 Collaborative Project), MicroScope is becoming a resource providing for the curation and analysis of both genomic and metabolic data. An increasing number of projects are related to the study of environmental bacterial (meta)genomes that are able to metabolize a large variety of chemical compounds that may be of high industrial interest.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Bases de Dados Genéticas , Genoma Bacteriano , Enzimas/genética , Evolução Molecular , Perfilação da Expressão Gênica , Genoma Arqueal , Genômica , Internet , Redes e Vias Metabólicas/genética , Software , Sintenia , Integração de Sistemas
5.
PLoS Genet ; 7(2): e1001296, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21347280

RESUMO

Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.


Assuntos
Sistemas de Secreção Bacterianos/genética , Bartonella/genética , Bartonella/metabolismo , Evolução Biológica , Especiação Genética , Adaptação Biológica/genética , Animais , Proteínas de Bactérias/genética , Bartonella/classificação , Biologia Computacional , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Anotação de Sequência Molecular , Filogenia , Ratos , Seleção Genética , Análise de Sequência de DNA
6.
J Bacteriol ; 194(10): 2742-3, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22535929

RESUMO

Ralstonia solanacearum is a widespread and destructive plant pathogen. We present the genome of the type strain, K60 (phylotype IIA, sequevar 7). Sequevar 7 strains cause ongoing tomato bacterial wilt outbreaks in the southeastern United States. K60 generally resembles R. solanacearum CFBP2957, a Caribbean tomato isolate, but has almost 360 unique genes.


Assuntos
Genoma Bacteriano , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Região do Caribe , Regulação Bacteriana da Expressão Gênica/fisiologia , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Estados Unidos
7.
J Bacteriol ; 194(15): 4135, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22815450

RESUMO

Micromonospora strains have been isolated from diverse niches, including soil, water, and marine sediments and root nodules of diverse symbiotic plants. In this work, we report the genome sequence of Micromonospora lupini Lupac 08 isolated from root nodules of the wild legume Lupinus angustifolious.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Lupinus/microbiologia , Micromonospora/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Micromonospora/isolamento & purificação , Dados de Sequência Molecular
8.
J Bacteriol ; 194(2): 551-2, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22207753

RESUMO

Methylomicrobium strains are widespread in saline environments. Here, we report the complete genome sequence of Methylomicrobium alcaliphilum 20Z, a haloalkaliphilic methanotrophic bacterium, which will provide the basis for detailed characterization of the core pathways of both single-carbon metabolism and responses to osmotic and high-pH stresses. Final assembly of the genome sequence revealed that this bacterium contains a 128-kb plasmid, making M. alcaliphilum 20Z the first methanotrophic bacterium of known genome sequence for which a plasmid has been reported.


Assuntos
Gammaproteobacteria/genética , Genoma Bacteriano , Dados de Sequência Molecular , Plasmídeos/genética
10.
J Bacteriol ; 194(14): 3729-30, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22740660

RESUMO

The draft genome of Methylacidiphilum fumariolicum SolV, a thermoacidophilic methanotroph of the phylum Verrucomicrobia, is presented. Annotation revealed pathways for one-carbon, nitrogen, and hydrogen catabolism and respiration together with central metabolic pathways. The genome encodes three orthologues of particulate methane monooxygenases. Sequencing of this genome will help in the understanding of methane cycling in volcanic environments.


Assuntos
Genoma Bacteriano , Fenômenos Geológicos , Verrucomicrobia/genética , Dados de Sequência Molecular
11.
J Bacteriol ; 193(17): 4541-2, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21725020

RESUMO

Rhodocyclales are representative of versatile bacteria that are able to utilize a wide variety of organic compounds for growth, but only a few strains have been isolated in pure culture thus far. Here we present the genome sequence of Methyloversatilis universalis FAM5(T), the first cultivable methylotrophic member of the order.


Assuntos
Genoma Bacteriano , Rhodocyclaceae/genética , Rhodocyclaceae/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Sedimentos Geológicos/microbiologia , Dados de Sequência Molecular , Família Multigênica , Oxirredução , Filogenia , Análise de Sequência de DNA , Transdução de Sinais
12.
J Bacteriol ; 193(18): 5035-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21868803

RESUMO

Hyphomicrobium sp. strain MC1 is an aerobic methylotroph originally isolated from industrial sewage. This prosthecate bacterium was the first strain reported to grow with chloromethane as the sole carbon and energy source. Its genome, consisting of a single 4.76-Mb chromosome, is the first for a chloromethane-degrading bacterium to be formally reported.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Hyphomicrobium/genética , Análise de Sequência de DNA , Aerobiose , Carbono/metabolismo , Hyphomicrobium/isolamento & purificação , Hyphomicrobium/metabolismo , Hyphomicrobium/fisiologia , Resíduos Industriais , Cloreto de Metila/metabolismo , Dados de Sequência Molecular , Esgotos/microbiologia
13.
J Bacteriol ; 193(22): 6418-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21725021

RESUMO

Methylobacter tundripaludum SV96(T) (ATCC BAA-1195) is a psychrotolerant aerobic methane-oxidizing gammaproteobacterium (Methylococcales, Methylococcaceae) living in High Arctic wetland soil. The strain was isolated from soil harvested in July 1996 close to the settlement Ny-Ålesund, Svalbard, Norway (78°56'N, 11°53'E), and described as a novel species in 2006. The genome includes pmo and pxm operons encoding copper membrane monooxygenases (Cu-MMOs), genes required for nitrogen fixation, and the nirS gene implicated in dissimilatory nitrite reduction to NO but no identifiable inventory for further processing of nitrogen oxides. These genome data provide the basis to investigate M. tundripaludum SV96, identified as a major player in the biogeochemistry of Arctic environments.


Assuntos
Genoma Bacteriano , Metano/metabolismo , Methylococcaceae/genética , Regiões Árticas , Sequência de Bases , Methylococcaceae/isolamento & purificação , Methylococcaceae/metabolismo , Dados de Sequência Molecular , Microbiologia do Solo
14.
J Bacteriol ; 193(10): 2668-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21441518

RESUMO

Methylocystis sp. strain Rockwell (ATCC 49242) is an aerobic methane-oxidizing alphaproteobacterium isolated from an aquifer in southern California. Unlike most methanotrophs in the Methylocystaceae family, this strain has a single pmo operon encoding particulate methane monooxygenase but no evidence of the genes encoding soluble methane monooxygenase. This is the first reported genome sequence of a member of the Methylocystis species of the Methylocystaceae family in the order Rhizobiales.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Methylocystaceae/genética , Aerobiose , California , Metano/metabolismo , Methylocystaceae/isolamento & purificação , Methylocystaceae/fisiologia , Dados de Sequência Molecular , Óperon , Oxigenases/genética , Análise de Sequência de DNA , Microbiologia da Água
15.
J Bacteriol ; 192(24): 6497-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20952571

RESUMO

Methylosinus trichosporium OB3b (for "oddball" strain 3b) is an obligate aerobic methane-oxidizing alphaproteobacterium that was originally isolated in 1970 by Roger Whittenbury and colleagues. This strain has since been used extensively to elucidate the structure and function of several key enzymes of methane oxidation, including both particulate and soluble methane monooxygenase (sMMO) and the extracellular copper chelator methanobactin. In particular, the catalytic properties of soluble methane monooxygenase from M. trichosporium OB3b have been well characterized in context with biodegradation of recalcitrant hydrocarbons, such as trichloroethylene. The sequence of the M. trichosporium OB3b genome is the first reported from a member of the Methylocystaceae family in the order Rhizobiales.


Assuntos
Genoma Bacteriano , Methylosinus trichosporium/classificação , Methylosinus trichosporium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Dados de Sequência Molecular
16.
BMC Genomics ; 11: 555, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20937090

RESUMO

BACKGROUND: Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed. RESULTS: C. sticklandii is one of the best biochemically studied proteolytic clostridial species. Useful additional information has been obtained from the sequencing and annotation of its genome, which is presented in this paper. Besides, experimental procedures reveal that C. sticklandii degrades amino acids in a preferential and sequential way. The organism prefers threonine, arginine, serine, cysteine, proline, and glycine, whereas glutamate, aspartate and alanine are excreted. Energy conservation is primarily obtained by substrate-level phosphorylation in fermentative pathways. The reactions catalyzed by different ferredoxin oxidoreductases and the exergonic NADH-dependent reduction of crotonyl-CoA point to a possible chemiosmotic energy conservation via the Rnf complex. C. sticklandii possesses both the F-type and V-type ATPases. The discovery of an as yet unrecognized selenoprotein in the D-proline reductase operon suggests a more detailed mechanism for NADH-dependent D-proline reduction. A rather unusual metabolic feature is the presence of genes for all the enzymes involved in two different CO2-fixation pathways: C. sticklandii harbours both the glycine synthase/glycine reductase and the Wood-Ljungdahl pathways. This unusual pathway combination has retrospectively been observed in only four other sequenced microorganisms. CONCLUSIONS: Analysis of the C. sticklandii genome and additional experimental procedures have improved our understanding of anaerobic amino acid degradation. Several specific metabolic features have been detected, some of which are very unusual for anaerobic fermenting bacteria. Comparative genomics has provided the opportunity to study the lifestyle of pathogenic and non-pathogenic clostridial species as well as to elucidate the difference in metabolic features between clostridia and other anaerobes.


Assuntos
Aminoácidos/metabolismo , Clostridium sticklandii/genética , Clostridium sticklandii/metabolismo , Genoma Bacteriano/genética , Aminoácido Oxirredutases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cromatografia Líquida , Clostridium sticklandii/enzimologia , Clostridium sticklandii/crescimento & desenvolvimento , Sequência Conservada/genética , Metabolismo Energético/genética , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Família Multigênica/genética , Estresse Oxidativo/genética , Selenocisteína/metabolismo , Alinhamento de Sequência , Sintenia/genética
17.
BMC Genomics ; 11: 368, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20537153

RESUMO

BACKGROUND: Helicobacter pylori infection is associated with several gastro-duodenal inflammatory diseases of various levels of severity. To determine whether certain combinations of genetic markers can be used to predict the clinical source of the infection, we analyzed well documented and geographically homogenous clinical isolates using a comparative genomics approach. RESULTS: A set of 254 H. pylori genes was used to perform array-based comparative genomic hybridization among 120 French H. pylori strains associated with chronic gastritis (n = 33), duodenal ulcers (n = 27), intestinal metaplasia (n = 17) or gastric extra-nodal marginal zone B-cell MALT lymphoma (n = 43). Hierarchical cluster analyses of the DNA hybridization values allowed us to identify a homogeneous subpopulation of strains that clustered exclusively with cagPAI minus MALT lymphoma isolates. The genome sequence of B38, a representative of this MALT lymphoma strain-cluster, was completed, fully annotated, and compared with the six previously released H. pylori genomes (i.e. J99, 26695, HPAG1, P12, G27 and Shi470). B38 has the smallest H. pylori genome described thus far (1,576,758 base pairs containing 1,528 CDSs); it contains the vacAs2m2 allele and lacks the genes encoding the major virulence factors (absence of cagPAI, babB, babC, sabB, and homB). Comparative genomics led to the identification of very few sequences that are unique to the B38 strain (9 intact CDSs and 7 pseudogenes). Pair-wise genomic synteny comparisons between B38 and the 6 H. pylori sequenced genomes revealed an almost complete co-linearity, never seen before between the genomes of strain Shi470 (a Peruvian isolate) and B38. CONCLUSION: These isolates are deprived of the main H. pylori virulence factors characterized previously, but are nonetheless associated with gastric neoplasia.


Assuntos
Genoma Bacteriano/genética , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Linfoma de Zona Marginal Tipo Células B/microbiologia , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas de Bactérias/genética , Análise por Conglomerados , Úlcera Duodenal/microbiologia , Evolução Molecular , Gastrite/microbiologia , Perfilação da Expressão Gênica , Ilhas Genômicas/genética , Humanos , Enteropatias/microbiologia , Filogenia , Especificidade da Espécie
18.
Environ Microbiol ; 11(8): 1959-70, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19364337

RESUMO

Vibrio splendidus is a dominant Vibrio species in seawater presenting a remarkable genetic diversity; several strains have been linked to invertebrate's mortality. We report the complete genome sequence of V. splendidus LGP32, an oyster pathogen, and its comparison with partial genome sequences from related strains. As is typical for the genus, V. splendidus LGP32 contains two chromosomes (3.29 and 1.67 Mb) and most essential cellular processes are encoded by chromosome 1. Comparison with two other V. splendidus partial genome sequences (strains 12B01 and Med222) confirms the previously suggested high genotypic diversity within this species and led to the identification of numerous strain-specific regions that could frequently not be assigned to a specific mechanisms of recombination. Surprisingly, the chromosomal integron, the most variable genetic element in all other Vibrio species analysed to date, is absent from 12B01 and inactivated by a mobile element in Med222, while in LGP32 it only contains a limited number of cassettes. Finally, we found that the LGP32 integron contains a new dfrA cassette, related to those found in resistance integrons of gram-negative clinical isolates. Those results suggest that marine Vibrio can be a source of antibiotic resistance genes.


Assuntos
Variação Genética , Vibrio/genética , Sequência de Bases , Biodiversidade , Impressões Digitais de DNA , Genoma Bacteriano , Integrons , Dados de Sequência Molecular , Filogenia , Água do Mar/microbiologia , Resistência a Trimetoprima/genética , Vibrio/classificação , Vibrio/metabolismo , Vibrio/patogenicidade
19.
Nat Biotechnol ; 24(6): 673-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16699499

RESUMO

Pseudomonas entomophila is an entomopathogenic bacterium that, upon ingestion, kills Drosophila melanogaster as well as insects from different orders. The complete sequence of the 5.9-Mb genome was determined and compared to the sequenced genomes of four Pseudomonas species. P. entomophila possesses most of the catabolic genes of the closely related strain P. putida KT2440, revealing its metabolically versatile properties and its soil lifestyle. Several features that probably contribute to its entomopathogenic properties were disclosed. Unexpectedly for an animal pathogen, P. entomophila is devoid of a type III secretion system and associated toxins but rather relies on a number of potential virulence factors such as insecticidal toxins, proteases, putative hemolysins, hydrogen cyanide and novel secondary metabolites to infect and kill insects. Genome-wide random mutagenesis revealed the major role of the two-component system GacS/GacA that regulates most of the potential virulence factors identified.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Genoma Bacteriano/genética , Insetos/efeitos dos fármacos , Controle Biológico de Vetores/métodos , Pseudomonas/genética , Microbiologia do Solo , Animais , Sequência de Bases , Mapeamento Cromossômico , Inseticidas/farmacologia , Dados de Sequência Molecular
20.
Nucleic Acids Res ; 34(1): 53-65, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16407324

RESUMO

Magnifying Genomes (MaGe) is a microbial genome annotation system based on a relational database containing information on bacterial genomes, as well as a web interface to achieve genome annotation projects. Our system allows one to initiate the annotation of a genome at the early stage of the finishing phase. MaGe's main features are (i) integration of annotation data from bacterial genomes enhanced by a gene coding re-annotation process using accurate gene models, (ii) integration of results obtained with a wide range of bioinformatics methods, among which exploration of gene context by searching for conserved synteny and reconstruction of metabolic pathways, (iii) an advanced web interface allowing multiple users to refine the automatic assignment of gene product functions. MaGe is also linked to numerous well-known biological databases and systems. Our system has been thoroughly tested during the annotation of complete bacterial genomes (Acinetobacter baylyi ADP1, Pseudoalteromonas haloplanktis, Frankia alni) and is currently used in the context of several new microbial genome annotation projects. In addition, MaGe allows for annotation curation and exploration of already published genomes from various genera (e.g. Yersinia, Bacillus and Neisseria). MaGe can be accessed at http://www.genoscope.cns.fr/agc/mage.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma Bacteriano , Genômica/métodos , Sintenia , Gráficos por Computador , Sistemas de Gerenciamento de Base de Dados , Internet , Integração de Sistemas , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA