Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Anat ; 245(2): 339-345, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38574100

RESUMO

Cartilage is a strong and flexible connective tissue that has many forms and functions in our body. While cartilage exhibits some forms of limited repair, for the most part, it is not particularly regenerative. Thus, in situations where patients require cartilage reconstruction, surgeons may use autografts to replace missing or damaged tissue. Cartilage tissues from different regions of the body exhibit histological differences and are in limited supply. Thus, it is important to characterize these differences to determine the most appropriate autograft source. In the case of microtia, a congenital deformity where the pinna is underdeveloped, reconstruction commonly utilizes cartilage sourced from a patient's own costal cartilage. This presents a potential morbidity risk. In this study, we evaluate the histological characteristics of microtia cartilage compared with normal auricular and costal cartilage obtained from human patients undergoing surgical resection. Histochemistry was used to evaluate cellularity, lipid content, and ECM content. Using a Bayesian statistical approach, we determined that while costal cartilage is the standard tissue donor, the microanatomy of microtia cartilage more closely reflects normal auricular cartilage than costal cartilage. Therefore, microtia cartilage may serve as an additional reservoir for cartilage during reconstruction.


Assuntos
Microtia Congênita , Cartilagem Costal , Cartilagem da Orelha , Humanos , Microtia Congênita/cirurgia , Cartilagem da Orelha/transplante , Cartilagem Costal/transplante , Procedimentos de Cirurgia Plástica/métodos , Masculino , Autoenxertos , Feminino , Adulto , Adolescente , Transplante Autólogo
2.
Dev Biol ; 416(1): 82-97, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27312576

RESUMO

Polarized epithelia define boundaries, spaces, and cavities within organisms. Cavitation, a process by which multicellular hollow balls or tubes are produced, is typically associated with the formation of organized epithelia. In order for these epithelial layers to form, cells must ultimately establish a distinct apical-basal polarity. Atypical PKCs have been proposed to be required for apical-basal polarity in diverse species. Here we show that while cells null for the Prkci isozyme exhibit some polarity characteristics, they fail to properly segregate apical-basal proteins, form a coordinated ectodermal epithelium, or participate in normal cavitation. A failure to cavitate could be due to an overgrowth of interior cells or to an inability of interior cells to die. Null cells however, do not have a marked change in proliferation rate and are still capable of undergoing cell death, suggesting that alterations in these processes are not the predominant cause of the failed cavitation. Overexpression of BMP4 or EZRIN can partially rescue the phenotype possibly by promoting cell death, polarity, and differentiation. However, neither is sufficient to provide the required cues to generate a polarized epithelium and fully rescue cavitation. Interestingly, when wildtype and Prkci(-/-) ES cells are mixed together, a polarized ectodermal epithelium forms and cavitation is rescued, likely due to the ability of wildtype cells to produce non-autonomous polarity cues. We conclude that Prkci is not required for cells to respond to these cues, though it is required to produce them. Together these findings indicate that environmental cues can facilitate the formation of polarized epithelia and that cavitation requires the proper coordination of multiple basic cellular processes including proliferation, differentiation, cell death, and apical-basal polarization.


Assuntos
Polaridade Celular , Epitélio/embriologia , Isoenzimas/fisiologia , Proteína Quinase C/fisiologia , Proteína Morfogenética Óssea 4/metabolismo , Moléculas de Adesão Celular/metabolismo , Morte Celular , Linhagem Celular , Proliferação de Células , Proteínas do Citoesqueleto/fisiologia , Perfilação da Expressão Gênica , Humanos , Isoenzimas/genética , Morfogênese , Fenótipo , Proteína Quinase C/genética , Transdução de Sinais
3.
PLoS Genet ; 10(1): e1004102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24497837

RESUMO

Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly correlated variants in biologically relevant chromatin annotations--we identified 727 such potentially functional SNPs. We also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory response element disruption of all correlated SNPs at r(2) ≥ 0.88%. 88% of the 727 SNPs fall within putative enhancers, and many alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer correlated SNPs. To aid the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a mark of actively engaged enhancers, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in linkage disequilibrium (r(2) = 0.91) with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and their potential target genes represents a preliminary step in connecting risk to disease process.


Assuntos
Elementos Facilitadores Genéticos , Anotação de Sequência Molecular/classificação , Neoplasias da Próstata/genética , Elementos de Resposta/genética , Alelos , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Risco , Fatores de Transcrição/genética
4.
iScience ; 24(10): 103084, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34611608

RESUMO

Cancer is an organism-level disease, impacting processes from cellular metabolism and the microenvironment to systemic immune response. Nevertheless, efforts to distinguish overarching mutational processes from interactions with the cell of origin for a tumor have seen limited success, presenting a barrier to individualized medicine. Here we present a pathway-centric approach, extracting somatic mutational profiles within and between tissues, largely orthogonal to cell of origin, mutational burden, or stage. Known predisposition variants are equally distributed among clusters, and largely independent of molecular subtype. Prognosis and risk of death vary jointly by cancer type and cluster. Analysis of metastatic tumors reveals that differences are largely cluster-specific and complementary, implicating convergent mechanisms that combine familiar driver genes with diverse low-frequency lesions in tumor-promoting pathways, ultimately producing distinct molecular phenotypes. The results shed new light on the interplay between organism-level dysfunction and tissue-specific lesions.

5.
Bioinformatics ; 25(13): 1617-24, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19401399

RESUMO

METHODS: A new method was developed for identifying novel transcription factor regulatory targets based on calculating Local Affinity Density. Techniques from the signal-processing field were used, in particular the Hann digital filter, to calculate the relative binding affinity of different regions based on previously published in vitro binding data. To illustrate this approach, the complete genomes of Drosophila melanogaster and D.pseudoobscura were analyzed for binding sites of the homeodomain proteinc Tinman, an essential heart development gene in both Drosophila and Mouse. The significant binding regions were identified relative to genomic background and assigned to putative target genes. Valid candidates common to both species of Drosophila were selected as a test of conservation. RESULTS: The new method was more sensitive than cluster searches for conserved binding motifs with respect to positive identification of known Tinman targets. Our Local Affinity Density method also identified a significantly greater proportion of Tinman-coexpressed genes than equivalent, optimized cluster searching. In addition, this new method predicted a significantly greater than expected number of genes with previously published RNAi phenotypes in the heart. AVAILABILITY: Algorithms were implemented in Python, LISP, R and maxima, using MySQL to access locally mirrored sequence data from Ensembl (D.melanogaster release 4.3) and flybase (D.pseudoobscura). All code is licensed under GPL and freely available at http://www.ohsu.edu/cellbio/dev_biol_prog/affinitydensity/.


Assuntos
Genômica/métodos , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Algoritmos , Animais , Sítios de Ligação , Drosophila melanogaster/genética , Genoma , Camundongos , Análise de Sequência de Proteína
6.
Elife ; 62017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068314

RESUMO

For decades, the mechanism of skeletal patterning along a proximal-distal axis has been an area of intense inquiry. Here, we examine the development of the ribs, simple structures that in most terrestrial vertebrates consist of two skeletal elements-a proximal bone and a distal cartilage portion. While the ribs have been shown to arise from the somites, little is known about how the two segments are specified. During our examination of genetically modified mice, we discovered a series of progressively worsening phenotypes that could not be easily explained. Here, we combine genetic analysis of rib development with agent-based simulations to conclude that proximal-distal patterning and outgrowth could occur based on simple rules. In our model, specification occurs during somite stages due to varying Hedgehog protein levels, while later expansion refines the pattern. This framework is broadly applicable for understanding the mechanisms of skeletal patterning along a proximal-distal axis.


Assuntos
Padronização Corporal , Costelas/embriologia , Somitos/embriologia , Animais , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Histocitoquímica , Camundongos , Camundongos Knockout , Modelos Biológicos
7.
J Bone Miner Res ; 30(2): 297-308, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25142306

RESUMO

The clinical need for methods to repair and regenerate large cartilage and bone lesions persists. One way to make new headway is to study skeletal regeneration when it occurs naturally. Cartilage repair is typically slow and incomplete. However, an exception to this observation can be found in the costal cartilages, where complete repair has been reported in humans but the cellular and molecular mechanisms have not yet been characterized. In this study, we establish a novel animal model for cartilage repair using the mouse rib costal cartilage. We then use this model to test the hypothesis that the perichondrium, the dense connective tissue that surrounds the cartilage, is a tissue essential for repair. Our results show that full replacement of the resected cartilage occurs quickly (within 1 to 2 months) and properly differentiates but that repair occurs only in the presence of the perichondrium. We then provide evidence that the rib perichondrium contains a special niche that houses chondrogenic progenitors that possess qualities particularly suited for mediating repair. Label-retaining cells can be found within the perichondrium that can give rise to new chondrocytes. Furthermore, the perichondrium proliferates and thickens during the healing period and when ectopically placed can generate new cartilage. In conclusion, we have successfully established a model for hyaline cartilage repair in the mouse rib, which should be useful for gaining a more detailed understanding of cartilage regeneration and ultimately for developing methods to improve cartilage and bone repair in other parts of the skeleton.


Assuntos
Cartilagem Articular/fisiologia , Regeneração/fisiologia , Costelas/fisiologia , Adulto , Animais , Ciclo Celular , Humanos , Masculino , Camundongos , Modelos Animais , Cicatrização
8.
G3 (Bethesda) ; 2(7): 789-802, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22870402

RESUMO

The human Tar-DNA binding protein, TDP-43, is associated with amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. TDP-43 contains two conserved RNA-binding motifs and has documented roles in RNA metabolism, including pre-mRNA splicing and repression of transcription. Here, using Drosophila melanogaster as a model, we generated loss-of-function and overexpression genotypes of Tar-DNA binding protein homolog (TBPH) to study their effect on the transcriptome of the central nervous system (CNS). By using massively parallel sequencing methods (RNA-seq) to profile the CNS, we find that loss of TBPH results in widespread gene activation and altered splicing, much of which are reversed by rescue of TBPH expression. Conversely, TBPH overexpression results in decreased gene expression. Although previous studies implicated both absence and mis-expression of TDP-43 in ALS, our data exhibit little overlap in the gene expression between them, suggesting that the bulk of genes affected by TBPH loss-of-function and overexpression are different. In combination with computational approaches to identify likely TBPH targets and orthologs of previously identified vertebrate TDP-43 targets, we provide a comprehensive analysis of enriched gene ontologies. Our data suggest that TDP-43 plays a role in synaptic transmission, synaptic release, and endocytosis. We also uncovered a potential novel regulation of the Wnt and BMP pathways, many of whose targets appear to be conserved.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Animais , Sítios de Ligação , Sistema Nervoso Central/metabolismo , Análise por Conglomerados , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA