Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NPJ Regen Med ; 6(1): 10, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649337

RESUMO

A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening. While medial SMCs contribute, the participation of hedgehog-responsive resident vascular stem cells (vSCs) to lesion formation remains unclear. Using transgenic eGFP mice and genetic lineage tracing of S100ß vSCs in vivo, we identified S100ß/Sca1 cells derived from a S100ß non-SMC parent population within lesions that co-localise with smooth muscle α-actin (SMA) cells following iatrogenic flow restriction, an effect attenuated following hedgehog inhibition with the smoothened inhibitor, cyclopamine. In vitro, S100ß/Sca1 cells isolated from atheroprone regions of the mouse aorta expressed hedgehog signalling components, acquired the di-methylation of histone 3 lysine 4 (H3K4me2) stable SMC epigenetic mark at the Myh11 locus and underwent myogenic differentiation in response to recombinant sonic hedgehog (SHh). Both S100ß and PTCH1 cells were present in human vessels while S100ß cells were enriched in arteriosclerotic lesions. Recombinant SHh promoted myogenic differentiation of human induced pluripotent stem cell-derived S100ß neuroectoderm progenitors in vitro. We conclude that hedgehog-responsive S100ß vSCs contribute to lesion formation and support targeting hedgehog signalling to treat subclinical arteriosclerosis.

2.
Comput Methods Biomech Biomed Engin ; 12(1): 25-33, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18821189

RESUMO

The success of stents to restore blood flow in atherosclerotic peripheral arteries is low relative to coronary arteries. It has been shown that joint flexion induces a mechanical environment that makes stent placement in these arteries highly incompatible, and damage and destruction of stents has been recorded. However, the effect of this environment on the stresses in the arteries is unknown. It is hypothesised that the stresses induced in arteries as a result of this mechanical environment could be sufficient to explain the relatively low success rates. To investigate this hypothesis, a finite element model of the stent-artery interaction was developed. Following stent expansion, bending was simulated by applying a displacement boundary condition to the artery. It is found that high stresses occur at the proximal/distal ends of the stent. As high stress and vascular injury are hypothesised to cause restenosis, the results presented here suggest that the mechanical environment of peripheral arteries could be the predominant cause of high restenosis rates.


Assuntos
Artérias/fisiologia , Prótese Vascular , Oclusão de Enxerto Vascular/fisiopatologia , Modelos Cardiovasculares , Implantação de Prótese , Stents , Simulação por Computador , Módulo de Elasticidade/fisiologia , Análise de Elementos Finitos , Humanos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA