RESUMO
The in vitro derivation of Schwann cells from human bone marrow stromal cells (hBMSCs) opens avenues for autologous transplantation to achieve remyelination therapy for post-traumatic neural regeneration. Towards this end, we exploited human induced pluripotent stem-cell-derived sensory neurons to direct Schwann-cell-like cells derived from among the hBMSC-neurosphere cells into lineage-committed Schwann cells (hBMSC-dSCs). These cells were seeded into synthetic conduits for bridging critical gaps in a rat model of sciatic nerve injury. With improvement in gait by 12-week post-bridging, evoked signals were also detectable across the bridged nerve. Confocal microscopy revealed axially aligned axons in association with MBP-positive myelin layers across the bridge in contrast to null in non-seeded controls. Myelinating hBMSC-dSCs within the conduit were positive for both MBP and human nucleus marker HuN. We then implanted hBMSC-dSCs into the contused thoracic cord of rats. By 12-week post-implantation, significant improvement in hindlimb motor function was detectable if chondroitinase ABC was co-delivered to the injured site; such cord segments showed axons myelinated by hBMSC-dSCs. Results support translation into a protocol by which lineage-committed hBMSC-dSCs become available for motor function recovery after traumatic injury to both peripheral and central nervous systems.
Assuntos
Bainha de Mielina , Células de Schwann , Humanos , Ratos , Animais , Diferenciação Celular , Bainha de Mielina/fisiologia , Axônios/fisiologia , Células Receptoras SensoriaisRESUMO
Pneumonia is the inflammation of the lungs and it is the world's leading cause of death for children under 5 years of age. The latest coronavirus disease 2019 (COVID-19) virus is a prominent culprit to severe pneumonia. With the pandemic running rampant for the past year, more than 1590000 deaths has occurred worldwide up to December 2020 and are substantially attributable to severe pneumonia and induced cytokine storm. Effective therapeutic approaches in addition to the vaccines and drugs under development are hence greatly sought after. Therapies harnessing stem cells and their derivatives have been established by basic research for their versatile capacity to specifically inhibit inflammation due to pneumonia and prevent alveolar/pulmonary fibrosis while enhancing antibacterial/antiviral immunity, thus significantly alleviating the severe clinical conditions of pneumonia. In recent clinical trials, mesenchymal stem cells have shown effectiveness in reducing COVID-19-associated pneumonia morbidity and mortality; positioning these cells as worthy candidates for combating one of the greatest challenges of our time and shedding light on their prospects as a next-generation therapy to counter future challenges.
RESUMO
Transplantation of oligodendrocyte precursors (OPs) is potentially therapeutic for myelin disorders but a safe and accessible cell source remains to be identified. Here we report a two-step protocol for derivation of highly enriched populations of OPs from bone marrow stromal cells of young adult rats (aMSCs). Neural progenitors among the aMSCs were expanded in non-adherent sphere-forming cultures and subsequently directed along the OP lineage with the use of glial-inducing growth factors. Immunocytochemical and flow cytometric analyses of these cells confirmed OP-like expression of Olig2, PDGFRα, NG2, and Sox10. OPs so derived formed compact myelin both in vitro, as in co-culture with purified neurons, and in vivo, following transplantation into the corpus callosum of neonatal shiverer mice. Not only did the density of myelinated axons in the corpus callosum of recipient shiverer mice reach levels comparable to those in age-matched wild-type mice, but the mean lifespan of recipient shiverer mice also far exceeded those of non-recipient shiverer mice. Our results thus promise progress in harnessing the OP-generating potential of aMSCs towards cell therapy for myelin disorders.