Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nucleic Acids Res ; 39(11): 4680-90, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21321018

RESUMO

C2H2 zinc fingers (C2H2-ZFs) are the most prevalent type of vertebrate DNA-binding domain, and typically appear in tandem arrays (ZFAs), with sequential C2H2-ZFs each contacting three (or more) sequential bases. C2H2-ZFs can be assembled in a modular fashion, providing one explanation for their remarkable evolutionary success. Given a set of modules with defined three-base specificities, modular assembly also presents a way to construct artificial proteins with specific DNA-binding preferences. However, a recent survey of a large number of three-finger ZFAs engineered by modular assembly reported high failure rates (∼70%), casting doubt on the generality of modular assembly. Here, we used protein-binding microarrays to analyze 28 ZFAs that failed in the aforementioned study. Most (17) preferred specific sequences, which in all but one case resembled the intended target sequence. Like natural ZFAs, the engineered ZFAs typically yielded degenerate motifs, binding dozens to hundreds of related individual sequences. Thus, the failure of these proteins in previous assays is not due to lack of sequence-specific DNA-binding activity. Our findings underscore the relevance of individual C2H2-ZF sequence specificities within tandem arrays, and support the general ability of modular assembly to produce ZFAs with sequence-specific DNA-binding activity.


Assuntos
Proteínas de Ligação a DNA/química , Dedos de Zinco , Sequência de Bases , Análise Serial de Proteínas/métodos , Ligação Proteica , Engenharia de Proteínas
2.
Nat Microbiol ; 7(10): 1605-1620, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138165

RESUMO

Pharmaceuticals have extensive reciprocal interactions with the microbiome, but whether bacterial drug sensitivity and metabolism is driven by pathways conserved in host cells remains unclear. Here we show that anti-cancer fluoropyrimidine drugs inhibit the growth of gut bacterial strains from 6 phyla. In both Escherichia coli and mammalian cells, fluoropyrimidines disrupt pyrimidine metabolism. Proteobacteria and Firmicutes metabolized 5-fluorouracil to its inactive metabolite dihydrofluorouracil, mimicking the major host mechanism for drug clearance. The preTA operon was necessary and sufficient for 5-fluorouracil inactivation by E. coli, exhibited high catalytic efficiency for the reductive reaction, decreased the bioavailability and efficacy of oral fluoropyrimidine treatment in mice and was prevalent in the gut microbiomes of colorectal cancer patients. The conservation of both the targets and enzymes for metabolism of therapeutics across domains highlights the need to distinguish the relative contributions of human and microbial cells to drug efficacy and side-effect profiles.


Assuntos
Antineoplásicos , Escherichia coli , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Humanos , Mamíferos , Redes e Vias Metabólicas , Camundongos
3.
Cell Rep ; 37(5): 109930, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731631

RESUMO

Mechanistic insights into the role of the human microbiome in the predisposition to and treatment of disease are limited by the lack of methods to precisely add or remove microbial strains or genes from complex communities. Here, we demonstrate that engineered bacteriophage M13 can be used to deliver DNA to Escherichia coli within the mouse gastrointestinal (GI) tract. Delivery of a programmable exogenous CRISPR-Cas9 system enables the strain-specific depletion of fluorescently marked isogenic strains during competitive colonization and genomic deletions that encompass the target gene in mice colonized with a single strain. Multiple mechanisms allow E. coli to escape targeting, including loss of the CRISPR array or even the entire CRISPR-Cas9 system. These results provide a robust and experimentally tractable platform for microbiome editing, a foundation for the refinement of this approach to increase targeting efficiency, and a proof of concept for the extension to other phage-bacterial pairs of interest.


Assuntos
Bacteriófago M13/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Deleção Cromossômica , Cromossomos Bacterianos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/genética , Microbioma Gastrointestinal , Edição de Genes , Animais , Proteína 9 Associada à CRISPR/metabolismo , Escherichia coli/crescimento & desenvolvimento , Fezes/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Estudo de Prova de Conceito
4.
BMC Microbiol ; 10: 92, 2010 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-20346169

RESUMO

BACKGROUND: S. meliloti forms indeterminate nodules on the roots of its host plant alfalfa (Medicago sativa). Bacteroids of indeterminate nodules are terminally differentiated and, unlike their non-terminally differentiated counterparts in determinate nodules, do not accumulate large quantities of Poly-3-hydroxybutyrate (PHB) during symbiosis. PhaZ is in intracellular PHB depolymerase; it represents the first enzyme in the degradative arm of the PHB cycle in S. meliloti and is the only enzyme in this half of the PHB cycle that remains uncharacterized. RESULTS: The S. meliloti phaZ gene was identified by in silico analysis, the ORF was cloned, and a S. meliloti phaZ mutant was constructed. This mutant exhibited increased PHB accumulation during free-living growth, even when grown under non-PHB-inducing conditions. The phaZ mutant demonstrated no reduction in symbiotic capacity; interestingly, analysis of the bacteroids showed that this mutant also accumulated PHB during symbiosis. This mutant also exhibited a decreased capacity to tolerate long-term carbon starvation, comparable to that of other PHB cycle mutants. In contrast to other PHB cycle mutants, the S. meliloti phaZ mutant did not exhibit any decrease in rhizosphere competitiveness; however, this mutant did exhibit a significant increase in succinoglycan biosynthesis. CONCLUSIONS: S. meliloti bacteroids retain the capacity to synthesize PHB during symbiosis; interestingly, accumulation does not occur at the expense of symbiotic performance. phaZ mutants are not compromised in their capacity to compete for nodulation in the rhizosphere, perhaps due to increased succinoglycan production resulting from upregulation of the succinoglycan biosynthetic pathway. The reduced survival capacity of free-living cells unable to access their accumulated stores of PHB suggests that PHB is a crucial metabolite under adverse conditions.


Assuntos
Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Sinorhizobium meliloti/enzimologia , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Clonagem Molecular , Biologia Computacional , Deleção de Genes , Hidroxibutiratos/metabolismo , Nodulação , Raízes de Plantas/microbiologia , Poliésteres/metabolismo , Polissacarídeos Bacterianos/biossíntese , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Simbiose
5.
Cell Host Microbe ; 27(6): 1001-1013.e9, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32348781

RESUMO

Despite the remarkable microbial diversity found within humans, our ability to link genes to phenotypes is based upon a handful of model microorganisms. We report a comparative genomics platform for Eggerthella lenta and other Coriobacteriia, a neglected taxon broadly relevant to human health and disease. We uncover extensive genetic and metabolic diversity and validate a tool for mapping phenotypes to genes and sequence variants. We also present a tool for the quantification of strains from metagenomic sequencing data, enabling the identification of genes that predict bacterial fitness. Competitive growth is reproducible under laboratory conditions and attributable to intrinsic growth rates and resource utilization. Unique signatures of in vivo competition in gnotobiotic mice include an adhesin enriched in poor colonizers. Together, these computational and experimental resources represent a strong foundation for the continued mechanistic dissection of the Coriobacteriia and a template that can be applied to study other genetically intractable taxa.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Dissecação/métodos , Microbioma Gastrointestinal/genética , Genômica , Actinobacteria/classificação , Actinobacteria/efeitos dos fármacos , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Genes Bacterianos/genética , Vida Livre de Germes , Humanos , Metagenoma , Metagenômica , Camundongos , Testes de Sensibilidade Microbiana , Família Multigênica , Fenótipo , Polimorfismo Genético
6.
Cell Host Microbe ; 26(1): 22-34, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295421

RESUMO

Despite the recognition, nearly a century ago, that the human microbiome plays a clinically relevant role in drug disposition, mechanistic insights, and translational applications are still limited. Here, we highlight the recent re-emergence of "pharmacomicrobiomics," which seeks to understand how inter-individual variations in the microbiome shape drug efficacy and side effect profiles. Multiple bacterial species, genes, and enzymes have already been implicated in the direct biotransformation of drugs, both from targeted case studies and from systematic computational and experimental analyses. Indirect mechanisms are also at play; for example, microbial interactions with the host immune system can have broad effects on immunomodulatory drugs. Finally, we discuss multiple emerging strategies for the precise manipulation of complex microbial communities to improve treatment outcomes. In the coming years, we anticipate a shift toward a more comprehensive view of precision medicine that encompasses our human and microbial genomes and their combined metabolic activities.


Assuntos
Tratamento Farmacológico/métodos , Microbiota , Medicina de Precisão/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Medicina de Precisão/tendências , Resultado do Tratamento
7.
Cell Host Microbe ; 26(3): 325-335.e5, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31492655

RESUMO

Bacteriophages are abundant within the human gastrointestinal tract, yet their interactions with gut bacteria remain poorly understood, particularly with respect to CRISPR-Cas immunity. Here, we show that the type I-C CRISPR-Cas system in the prevalent gut Actinobacterium Eggerthella lenta is transcribed and sufficient for specific targeting of foreign and chromosomal DNA. Comparative analyses of E. lenta CRISPR-Cas systems across (meta)genomes revealed 2 distinct clades according to cas sequence similarity and spacer content. We assembled a human virome database (HuVirDB), encompassing 1,831 samples enriched for viral DNA, to identify protospacers. This revealed matches for a majority of spacers, a marked increase over other databases, and uncovered "hyper-targeted" phage sequences containing multiple protospacers targeted by several E. lenta strains. Finally, we determined the positional mismatch tolerance of observed spacer-protospacer pairs. This work emphasizes the utility of merging computational and experimental approaches for determining the function and targets of CRISPR-Cas systems.


Assuntos
Bactérias/virologia , Bacteriófagos/genética , Sistemas CRISPR-Cas , Trato Gastrointestinal/microbiologia , Actinobacteria/virologia , Bactérias/genética , Sequência de Bases , DNA Bacteriano/análise , DNA Viral/análise , Bases de Dados Genéticas , Genoma Bacteriano , Genoma Viral , Humanos , Metagenômica , Microbiota/genética , Análise de Sequência de DNA
8.
mSystems ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600285

RESUMO

Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be introduced into the gut microbe Bacteroides thetaiotaomicron to identify genes based on activity screening. Our results support the continuing development of genetically tractable systems to obtain information about gene function.

9.
Microbiome ; 3: 22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26056565

RESUMO

BACKGROUND: Clone libraries provide researchers with a powerful resource to study nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided in studies of microbial biodiversity and function, and allowed the mining of novel enzymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries, and it was speculated to be a result of fragmentation and loss of AT-rich sequences during cloning. However, evidence in the literature suggests that transcriptional activity or gene product toxicity may play a role. RESULTS: To explore possible mechanisms responsible for sequence bias in clone libraries, we constructed a cosmid library from a human microbiome sample and sequenced DNA from different steps during library construction: crude extract DNA, size-selected DNA, and cosmid library DNA. We confirmed a GC bias in the final cosmid library, and we provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences but is likely occurring after DNA is introduced into Escherichia coli. To investigate the influence of strong constitutive transcription, we searched the sequence data for promoters and found that rpoD/σ(70) promoter sequences were underrepresented in the cosmid library. Furthermore, when we examined the genomes of taxa that were differentially abundant in the cosmid library relative to the original sample, we found the bias to be more correlated with the number of rpoD/σ(70) consensus sequences in the genome than with simple GC content. CONCLUSIONS: The GC bias of metagenomic libraries does not appear to be due to DNA fragmentation. Rather, analysis of promoter sequences provides support for the hypothesis that strong constitutive transcription from sequences recognized as rpoD/σ(70) consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of the insert DNA that gives rise to the transcription. Despite widespread use of E. coli to propagate foreign DNA in metagenomic libraries, the effects of in vivo transcriptional activity on clone stability are not well understood. Further work is required to tease apart the effects of transcription from those of gene product toxicity.

10.
Front Microbiol ; 6: 1196, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579102

RESUMO

Functional metagenomics is a powerful experimental approach for studying gene function, starting from the extracted DNA of mixed microbial populations. A functional approach relies on the construction and screening of metagenomic libraries-physical libraries that contain DNA cloned from environmental metagenomes. The information obtained from functional metagenomics can help in future annotations of gene function and serve as a complement to sequence-based metagenomics. In this Perspective, we begin by summarizing the technical challenges of constructing metagenomic libraries and emphasize their value as resources. We then discuss libraries constructed using the popular cloning vector, pCC1FOS, and highlight the strengths and shortcomings of this system, alongside possible strategies to maximize existing pCC1FOS-based libraries by screening in diverse hosts. Finally, we discuss the known bias of libraries constructed from human gut and marine water samples, present results that suggest bias may also occur for soil libraries, and consider factors that bias metagenomic libraries in general. We anticipate that discussion of current resources and limitations will advance tools and technologies for functional metagenomics research.

11.
Nat Biotechnol ; 33(5): 555-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690854

RESUMO

Cys2-His2 zinc finger (C2H2-ZF) proteins represent the largest class of putative human transcription factors. However, for most C2H2-ZF proteins it is unknown whether they even bind DNA or, if they do, to which sequences. Here, by combining data from a modified bacterial one-hybrid system with protein-binding microarray and chromatin immunoprecipitation analyses, we show that natural C2H2-ZFs encoded in the human genome bind DNA both in vitro and in vivo, and we infer the DNA recognition code using DNA-binding data for thousands of natural C2H2-ZF domains. In vivo binding data are generally consistent with our recognition code and indicate that C2H2-ZF proteins recognize more motifs than all other human transcription factors combined. We provide direct evidence that most KRAB-containing C2H2-ZF proteins bind specific endogenous retroelements (EREs), ranging from currently active to ancient families. The majority of C2H2-ZF proteins, including KRAB proteins, also show widespread binding to regulatory regions, indicating that the human genome contains an extensive and largely unstudied adaptive C2H2-ZF regulatory network that targets a diverse range of genes and pathways.


Assuntos
Proteínas de Transporte/metabolismo , Genoma Humano , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Retroelementos/genética , Proteínas de Transporte/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Proteínas Nucleares/genética , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/genética
12.
PLoS One ; 9(6): e98968, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24911009

RESUMO

High-throughput sequencing methods have been instrumental in the growing field of metagenomics, with technological improvements enabling greater throughput at decreased costs. Nonetheless, the economy of high-throughput sequencing cannot be fully leveraged in the subdiscipline of functional metagenomics. In this area of research, environmental DNA is typically cloned to generate large-insert libraries from which individual clones are isolated, based on specific activities of interest. Sequence data are required for complete characterization of such clones, but the sequencing of a large set of clones requires individual barcode-based sample preparation; this can become costly, as the cost of clone barcoding scales linearly with the number of clones processed, and thus sequencing a large number of metagenomic clones often remains cost-prohibitive. We investigated a hybrid Sanger/Illumina pooled sequencing strategy that omits barcoding altogether, and we evaluated this strategy by comparing the pooled sequencing results to reference sequence data obtained from traditional barcode-based sequencing of the same set of clones. Using identity and coverage metrics in our evaluation, we show that pooled sequencing can generate high-quality sequence data, without producing problematic chimeras. Though caveats of a pooled strategy exist and further optimization of the method is required to improve recovery of complete clone sequences and to avoid circumstances that generate unrecoverable clone sequences, our results demonstrate that pooled sequencing represents an effective and low-cost alternative for sequencing large sets of metagenomic clones.


Assuntos
Cosmídeos/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica , Análise de Sequência de DNA/métodos , Clonagem Molecular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA