Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunol Cell Biol ; 102(6): 444-447, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38693888

RESUMO

Natural killer (NK) cells possess potent cytotoxicity against infected and cancerous cells and hold promise in the development of new immunotherapies. This article for the Highlights of 2023 Series focuses on current advances in NK cell biology in cancerous and infectious settings and highlights opportunities for therapeutic interventions, including engineered NK cell therapies and advancements in feeder cell technologies.


Assuntos
Engenharia Celular , Imunoterapia , Células Matadoras Naturais , Neoplasias , Animais , Humanos , Citotoxicidade Imunológica , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Neoplasias/imunologia
2.
Immunol Cell Biol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873699

RESUMO

Antibiotic resistance is a major public health threat, and alternatives to antibiotic therapy are urgently needed. Immunotherapy, particularly the blockade of inhibitory immune checkpoints, is a leading treatment option in cancer and autoimmunity. In this study, we used a murine model of Salmonella Typhimurium infection to investigate whether immune checkpoint blockade could be applied to bacterial infection. We found that the immune checkpoint T-cell immunoglobulin and ITIM domain (TIGIT) was significantly upregulated on lymphocytes during infection, particularly on CD4+ T cells, drastically limiting their proinflammatory function. Blockade of TIGIT in vivo using monoclonal antibodies was able to enhance immunity and improve bacterial clearance. The efficacy of anti-TIGIT was dependent on the capacity of the antibody to bind to Fc (fragment crystallizable) receptors, giving important insights into the mechanism of anti-TIGIT therapy. This research suggests that targeting immune checkpoints, such as TIGIT, has the potential to enhance immune responses toward bacteria and restore antibacterial treatment options in the face of antibiotic resistance.

3.
Blood ; 136(26): 3004-3017, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-32818230

RESUMO

Natural killer (NK) cells play critical roles in protection against hematological malignancies but can acquire a dysfunctional state, which limits antitumor immunity. However, the underlying reasons for this impaired NK cell function remain to be uncovered. We found that NK cells in aggressive B-cell lymphoma underwent substantial transcriptional reprogramming associated with increased lipid metabolism, including elevated expression of the transcriptional regulator peroxisome activator receptor-γ (PPAR-γ). Exposure to fatty acids in the lymphoma environment potently suppressed NK cell effector response and cellular metabolism. NK cells from both diffuse large B-cell lymphoma patients and Eµ-myc B-cell lymphoma-bearing mice displayed reduced interferon-γ (IFN-γ) production. Activation of PPAR-γ partially restored mitochondrial membrane potential and IFN-γ production. Overall, our data indicate that increased lipid metabolism, while impairing their function, is a functional adaptation of NK cells to the fatty-acid rich lymphoma environment.


Assuntos
Células Matadoras Naturais/imunologia , Metabolismo dos Lipídeos/imunologia , Linfoma Difuso de Grandes Células B/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Interferon gama/genética , Interferon gama/imunologia , Células Matadoras Naturais/patologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/imunologia , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , PPAR gama/genética , PPAR gama/imunologia , Microambiente Tumoral/genética
4.
J Biol Chem ; 289(28): 19758-68, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24872416

RESUMO

Epidermal and mucosal epithelial cells are integral to host defense. They not only act as a physical barrier but also utilize pattern recognition receptors, such as the Toll-like receptors (TLRs), to detect and respond to pathogens. Members of the interferon regulatory factor (IRF) family of transcription factors are key components of TLR signaling as they impart specificity to downstream responses. Although IRF6 is a critical regulator of epithelial cell proliferation and differentiation, its role in TLR signaling has not previously been addressed. We show here that IRF6 is activated by IRAK1 as well as by MyD88 but not by TRIF or TBK1. Co-immunoprecipitation experiments further demonstrated that IRF6 can interact with IRAK1. Gene silencing in epithelial cells along with gene promoter reporter assays showed that IRAK1 mediates TLR2-inducible CCL5 gene expression at least in part by promoting IRF6 activation. Conversely, IRAK1 regulated CXCL8 gene expression independently of IRF6, thus identifying a molecular mechanism by which TLR2 signaling differentially regulates the expression of specific chemokines in epithelial cells. Bioinformatics analysis and mutagenesis-based experiments identified Ser-413 and Ser-424 as key regulatory sites in IRF6. Phosphomimetic mutation of these residues resulted in greatly enhanced IRF6 dimerization and trans-activator function. Collectively, our findings suggest that, in addition to its importance for epithelial barrier function, IRF6 also contributes to host defense by providing specificity to the regulation of inflammatory chemokine expression by TLR2 in epithelial cells.


Assuntos
Quimiocina CCL5/biossíntese , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/fisiologia , Fatores Reguladores de Interferon/metabolismo , Interleucina-8/biossíntese , Transdução de Sinais/fisiologia , Receptor 2 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Quimiocina CCL5/genética , Células Epiteliais/citologia , Humanos , Fatores Reguladores de Interferon/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-8/genética , Mutação de Sentido Incorreto , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 2 Toll-Like/genética
5.
Nat Commun ; 14(1): 7739, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007580

RESUMO

Spatial transcriptomics (ST) technologies generate multiple data types from biological samples, namely gene expression, physical distance between data points, and/or tissue morphology. Here we developed three computational-statistical algorithms that integrate all three data types to advance understanding of cellular processes. First, we present a spatial graph-based method, pseudo-time-space (PSTS), to model and uncover relationships between transcriptional states of cells across tissues undergoing dynamic change (e.g. neurodevelopment, brain injury and/or microglia activation, and cancer progression). We further developed a spatially-constrained two-level permutation (SCTP) test to study cell-cell interaction, finding highly interactive tissue regions across thousands of ligand-receptor pairs with markedly reduced false discovery rates. Finally, we present a spatial graph-based imputation method with neural network (stSME), to correct for technical noise/dropout and increase ST data coverage. Together, the algorithms that we developed, implemented in the comprehensive and fast stLearn software, allow for robust interrogation of biological processes within healthy and diseased tissues.


Assuntos
Algoritmos , Software , Comunicação Celular , Perfilação da Expressão Gênica/métodos , Redes Neurais de Computação , Transcriptoma
6.
Front Med (Lausanne) ; 9: 873923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872784

RESUMO

Available transcriptomes of the mammalian kidney provide limited information on the spatial interplay between different functional nephron structures due to the required dissociation of tissue with traditional transcriptome-based methodologies. A deeper understanding of the complexity of functional nephron structures requires a non-dissociative transcriptomics approach, such as spatial transcriptomics sequencing (ST-seq). We hypothesize that the application of ST-seq in normal mammalian kidneys will give transcriptomic insights within and across species of physiology at the functional structure level and cellular communication at the cell level. Here, we applied ST-seq in six mice and four human kidneys that were histologically absent of any overt pathology. We defined the location of specific nephron structures in the captured ST-seq datasets using three lines of evidence: pathologist's annotation, marker gene expression, and integration with public single-cell and/or single-nucleus RNA-sequencing datasets. We compared the mouse and human cortical kidney regions. In the human ST-seq datasets, we further investigated the cellular communication within glomeruli and regions of proximal tubules-peritubular capillaries by screening for co-expression of ligand-receptor gene pairs. Gene expression signatures of distinct nephron structures and microvascular regions were spatially resolved within the mouse and human ST-seq datasets. We identified 7,370 differentially expressed genes (p adj < 0.05) distinguishing species, suggesting changes in energy production and metabolism in mouse cortical regions relative to human kidneys. Hundreds of potential ligand-receptor interactions were identified within glomeruli and regions of proximal tubules-peritubular capillaries, including known and novel interactions relevant to kidney physiology. Our application of ST-seq to normal human and murine kidneys confirms current knowledge and localization of transcripts within the kidney. Furthermore, the generated ST-seq datasets provide a valuable resource for the kidney community that can be used to inform future research into this complex organ.

7.
Cancer Immunol Res ; 7(6): 952-962, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31053598

RESUMO

Invariant natural killer T (iNKT) cells are a subset of lymphocytes with immune regulatory activity. Their ability to bridge the innate and adaptive immune systems has been studied using the glycolipid ligand α-galactosylceramide (αGC). To better harness the immune adjuvant properties of iNKT cells to enhance priming of antigen-specific CD8+ T cells, we encapsulated both αGC and antigen in a Clec9a-targeted nanoemulsion (TNE) to deliver these molecules to cross-presenting CD8+ dendritic cells (DC). We demonstrate that, even in the absence of exogenous glycolipid, iNKT cells supported the maturation of CD8α+ DCs to drive efficient cross-priming of antigen-specific CD8+ T cells upon delivery of Clec9a/OVA-TNE. The addition of αGC to the TNE (Clec9a/OVA/αGC) further enhanced activation of iNKT cells, NK cells, CD8α+ DCs, and polyfunctional CD8+ T cells. When tested therapeutically against HPVE7-expressing TC-1 tumors, long-term tumor suppression was achieved with a single administration of Clec9a/E7 peptide/αGC TNE. Antitumor activity was correlated with the recruitment of mature DCs, NK cells, and tumor-specific effector CD8+ T cells to the tumor-draining lymph node and tumor tissue. Thus, Clec9a-TNE codelivery of CD8+ T-cell epitopes with αGC induces alternative helper signals from activated iNKT cells, elicits innate (iNKT, NK) immunity, and enhances antitumor CD8+ T-cell responses for control of solid tumors.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Imunidade/efeitos dos fármacos , Lectinas Tipo C/antagonistas & inibidores , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Receptores Mitogênicos/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citotoxicidade Imunológica , Emulsões , Galactosilceramidas/metabolismo , Imunidade Inata , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Nanopartículas
8.
Oncoimmunology ; 7(10): e1486952, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288351

RESUMO

Immunomodulatory therapies can effectively control haematological malignancies. Previously we reported the effectiveness of combination immunotherapies that centre on 4-1BB-targeted co-stimulation of CD8 + T cells, particularly when simultaneously harnessing the immune adjuvant properties of Natural Killer T (NKT) cells. The objective of this study was to assess the effectiveness of agonistic anti-4-1BB antibody-based combination therapy against two aggressive forms of acute myeloid leukemia (AML). Anti-4-1BB treatment alone resulted in transient suppression of established AML-ETO9a tumor growth in 50% of mice, however the majority of these mice subsequently succumbed to disease. Combining alpha-galactosylceramide (α-GalCer)-loaded tumor cell vaccination with anti-4-1BB antibody treatment increased the proportion of responding mice to 100%, and protection led to long-term, tumor-free survival, demonstrating complete eradication of AML. This finding was extended to established mixed lymphocytic leukemia (MLL)-AF9 tumors, whereby vaccine plus anti-4-1BB combination similarly resulted in 100% protection. The addition of anti-PD-1 to anti-4-1BB treatment, although improving survival outcomes compared to anti-4-1BB alone, was not as effective as NKT cell vaccination. The effectiveness of 4-1BB combination therapies was dependent on IFN-γ signaling within host cells, but not tumors. Vaccine plus anti-4-1BB therapy elicited potent generation of functional effector and memory CD8 + T cells in all tumor-associated organs. Therapy induced KLRG1+ effector CD8 T cells were the most effective at controlling disease. We show that combining NKT cell-targeting vaccination with anti-4-1BB provides excellent therapeutic responses against AML and MLL in mice, and these results will guide ongoing efforts in finding immunotherapeutic solutions against acute myeloid leukemias.

9.
Oncoimmunology ; 7(2): e1393599, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308328

RESUMO

Monocytosis is considered a poor prognostic factor for many cancers, including B cell lymphomas. The mechanisms by which different monocyte subsets support the growth of lymphoma is poorly understood. Using a pre-clinical mouse model of B cell non-Hodgkin's lymphoma (B-NHL), we investigated the impact of tumor progression on circulating monocyte levels, subset distribution and their activity, with a focus on immune suppression. B-NHL development corresponded with significant expansion initially of classical (Ly6Chi) and non-classical (Ly6Clo) monocytes, with accumulation and eventual predominance of Ly6Clo cells. The lymphoma environment promoted the conversion, preferential survival and immune suppressive activity of Ly6Clo monocytes. Ly6Clo monocytes expressed higher levels of immunosuppressive genes including PD-L1/2, Arg1, IDO1 and CD163, compared to Ly6Chi monocytes. Both monocyte subsets suppressed CD8 T cell proliferation and IFN-γ production in vitro, but via different mechanisms. Ly6Chi monocyte suppression was contact dependent, while Ly6Clo monocytes suppressed via soluble mediators, including IDO and arginase. Ly6Clo monocytes could be selectively depleted in tumor-bearing hosts by liposomal doxorubicin treatment, further enhanced by co-administration of anti-4-1BB monoclonal antibody. This treatment led to a reduction in tumor growth, but failed to improve overall survival. Analogous immunosuppressive monocytes were observed in peripheral blood of diffuse large B cell lymphoma patients and actively suppressed human CD8 T cell proliferation. This study highlights a potential immune evasion strategy deployed by B cell lymphoma involving accumulation of circulating non-classical monocytes with immunosuppressive activity.

10.
Cell Death Dis ; 9(3): 267, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449600

RESUMO

Glucocorticoids (GCs) are potent anti-inflammatory drugs whose mode of action is complex and still debatable. One likely cellular target of GCs are monocytes/macrophages. The role of GCs in monocyte survival is also debated. Although both granulocyte macrophage-colony stimulating factor (GM-CSF) and macrophage-CSF (M-CSF) are important regulators of macrophage lineage functions including their survival, the former is often associated with proinflammatory functions while the latter is important in lineage homeostasis. We report here that the GC, dexamethasone, induces apoptosis in GM-CSF-treated human monocytes while having no impact on M-CSF-induced monocyte survival. To understand how GCs, GM-CSF, and M-CSF are regulating monocyte survival and other functions during inflammation, we firstly examined the transcriptomic changes elicited by these three agents in human monocytes, either acting alone or in combination. Transcriptomic and Ingenuity pathway analyses found that dexamethasone differentially modulated dendritic cell maturation and TREM1 signaling pathways in GM-CSF-treated and M-CSF-treated monocytes, two pathways known to be regulated by ERK1/2 activity. These analyses led us to provide evidence that the GC inhibits ERK1/2 activity selectively in GM-CSF-treated monocytes to induce apoptosis. It is proposed that this inhibition of ERK1/2 activity leads to inactivation of p90 ribosomal-S6 kinase and Bad dephosphorylation leading in turn to enhanced caspase-3 activity and subsequent apoptosis. Furthermore, pharmacological inhibition of GC receptor activity restored the ERK1/2 signaling and prevented the GC-induced apoptosis in GM-CSF-treated monocytes. Increased tissue macrophage numbers, possibly from enhanced survival due to mediators such as GM-CSF, can correlate with inflammatory disease severity; also reduction in these numbers can correlate with the therapeutic benefit of a number of agents, including GCs. We propose that the ERK1/2 signaling pathway promotes survival of GM-CSF-treated proinflammatory monocytes, which can be selectively targeted by GCs as a novel mechanism to reduce local monocyte/macrophage numbers and hence inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Inflamação/prevenção & controle , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Monócitos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Inflamação/enzimologia , Inflamação/patologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Monócitos/enzimologia , Monócitos/patologia , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
11.
Front Immunol ; 8: 1355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109728

RESUMO

Invariant natural killer T (iNKT) cells are a unique innate T lymphocyte population that possess cytolytic properties and profound immunoregulatory activities. iNKT cells play an important role in the immune surveillance of blood cancers. They predominantly recognize glycolipid antigens presented on CD1d, but their activation and cytolytic activities are not confined to CD1d expressing cells. iNKT cell stimulation and subsequent production of immunomodulatory cytokines serve to enhance the overall antitumor immune response. Crucially, the activation of iNKT cells in cancer often precedes the activation and priming of other immune effector cells, such as NK cells and T cells, thereby influencing the generation and outcome of the antitumor immune response. Blood cancers can evade or dampen iNKT cell responses by downregulating expression of recognition receptors or by actively suppressing or diverting iNKT cell functions. This review will discuss literature on iNKT cell activity and associated dysregulation in blood cancers as well as highlight some of the strategies designed to harness and enhance iNKT cell functions against blood cancers.

12.
J Clin Invest ; 126(9): 3453-66, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27525438

RESUMO

Data from preclinical and clinical studies have demonstrated that granulocyte macrophage colony-stimulating factor (GM-CSF) can function as a key proinflammatory cytokine. However, therapies that directly target GM-CSF function could lead to undesirable side effects, creating a need to delineate downstream pathways and mediators. In this work, we provide evidence that GM-CSF drives CCL17 production by acting through an IFN regulatory factor 4-dependent (IRF4-dependent) pathway in human monocytes, murine macrophages, and mice in vivo. In murine models of arthritis and pain, IRF4 regulated the formation of CCL17, which mediated the proinflammatory and algesic actions of GM-CSF. Mechanistically, GM-CSF upregulated IRF4 expression by enhancing JMJD3 demethylase activity. We also determined that CCL17 has chemokine-independent functions in inflammatory arthritis and pain. These findings indicate that GM-CSF can mediate inflammation and pain by regulating IRF4-induced CCL17 production, providing insights into a pathway with potential therapeutic avenues for the treatment of inflammatory diseases and their associated pain.


Assuntos
Quimiocina CCL17/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Inflamação , Fatores Reguladores de Interferon/metabolismo , Animais , Artrite/metabolismo , Células da Medula Óssea/metabolismo , Inativação Gênica , Heterozigoto , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Macrófagos/metabolismo , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Dor , Manejo da Dor , Peritonite/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA