Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant Physiol ; 191(1): 70-86, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36124989

RESUMO

Bioengineering approaches to modify lignin content and structure in plant cell walls have shown promise for facilitating biochemical conversions of lignocellulosic biomass into valuable chemicals. Despite numerous research efforts, however, the effect of altered lignin chemistry on the supramolecular assembly of lignocellulose and consequently its deconstruction in lignin-modified transgenic and mutant plants is not fully understood. In this study, we aimed to close this gap by analyzing lignin-modified rice (Oryza sativa L.) mutants deficient in 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (CAldOMT) and CINNAMYL ALCOHOL DEHYDROGENASE (CAD). A set of rice mutants harboring knockout mutations in either or both OsCAldOMT1 and OsCAD2 was generated in part by genome editing and subjected to comparative cell wall chemical and supramolecular structure analyses. In line with the proposed functions of CAldOMT and CAD in grass lignin biosynthesis, OsCAldOMT1-deficient mutant lines produced altered lignins depleted of syringyl and tricin units and incorporating noncanonical 5-hydroxyguaiacyl units, whereas OsCAD2-deficient mutant lines produced lignins incorporating noncanonical hydroxycinnamaldehyde-derived units. All tested OsCAldOMT1- and OsCAD2-deficient mutants, especially OsCAldOMT1-deficient lines, displayed enhanced cell wall saccharification efficiency. Solid-state nuclear magnetic resonance (NMR) and X-ray diffraction analyses of rice cell walls revealed that both OsCAldOMT1- and OsCAD2 deficiencies contributed to the disruptions of the cellulose crystalline network. Further, OsCAldOMT1 deficiency contributed to the increase of the cellulose molecular mobility more prominently than OsCAD2 deficiency, resulting in apparently more loosened lignocellulose molecular assembly. Such alterations in cell wall chemical and supramolecular structures may in part account for the variations of saccharification performance of the OsCAldOMT1- and OsCAD2-deficient rice mutants.


Assuntos
Lignina , Oryza , Lignina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Mutação/genética , Parede Celular/metabolismo
2.
Plant Physiol ; 190(4): 2155-2172, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36149320

RESUMO

The 4-coumarate:coenzyme A ligase (4CL) is a key enzyme that contributes to channeling metabolic flux in the cinnamate/monolignol pathway, leading to the production of monolignols, p-hydroxycinnamates, and a flavonoid tricin, the major building blocks of lignin polymer in grass cell walls. Vascular plants often contain multiple 4CL genes; however, the contribution of each 4CL isoform to lignin biosynthesis remains unclear, especially in grasses. In this study, we characterized the functions of two rice (Oryza sativa L.) 4CL isoforms (Os4CL3 and Os4CL4) primarily by analyzing the cell wall chemical structures of rice mutants generated by CRISPR/Cas9-mediated targeted mutagenesis. A series of chemical and nuclear magnetic resonance analyses revealed that loss-of-function of Os4CL3 and Os4CL4 differently altered the composition of lignin polymer units. Loss of function of Os4CL3 induced marked reductions in the major guaiacyl and syringyl lignin units derived from both the conserved non-γ-p-coumaroylated and the grass-specific γ-p-coumaroylated monolignols, with more prominent reductions in guaiacyl units than in syringyl units. In contrast, the loss-of-function mutation to Os4CL4 primarily decreased the abundance of the non-γ-p-coumaroylated guaiacyl units. Loss-of-function of Os4CL4, but not of Os4CL3, reduced the grass-specific lignin-bound tricin units, indicating that Os4CL4 plays a key role not only in monolignol biosynthesis but also in the biosynthesis of tricin used for lignification. Further, the loss-of-function of Os4CL3 and Os4CL4 notably reduced cell-wall-bound ferulates, indicating their roles in cell wall feruloylation. Overall, this study demonstrates the overlapping but divergent roles of 4CL isoforms during the coordinated production of various lignin monomers.


Assuntos
Oryza , Oryza/metabolismo , Lignina/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Parede Celular/metabolismo , Mutação/genética
3.
Plant Physiol ; 188(4): 1993-2011, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963002

RESUMO

Lignin is a complex phenylpropanoid polymer deposited in the secondary cell walls of vascular plants. Unlike most gymnosperm and eudicot lignins that are generated via the polymerization of monolignols, grass lignins additionally incorporate the flavonoid tricin as a natural lignin monomer. The biosynthesis and functions of tricin-integrated lignin (tricin-lignin) in grass cell walls and its effects on the utility of grass biomass remain largely unknown. We herein report a comparative analysis of rice (Oryza sativa) mutants deficient in the early flavonoid biosynthetic genes encoding CHALCONE SYNTHASE (CHS), CHALCONE ISOMERASE (CHI), and CHI-LIKE (CHIL), with an emphasis on the analyses of disrupted tricin-lignin formation and the concurrent changes in lignin profiles and cell wall digestibility. All examined CHS-, CHI-, and CHIL-deficient rice mutants were largely depleted of extractable flavones, including tricin, and nearly devoid of tricin-lignin in the cell walls, supporting the crucial roles of CHS and CHI as committed enzymes and CHIL as a noncatalytic enhancer in the conserved biosynthetic pathway leading to flavone and tricin-lignin formation. In-depth cell wall structural analyses further indicated that lignin content and composition, including the monolignol-derived units, were differentially altered in the mutants. However, regardless of the extent of the lignin alterations, cell wall saccharification efficiencies of all tested rice mutants were similar to that of the wild-type controls. Together with earlier studies on other tricin-depleted grass mutant and transgenic plants, our results reflect the complexity in the metabolic consequences of tricin pathway perturbations and the relationships between lignin profiles and cell wall properties.


Assuntos
Lignina , Oryza , Aciltransferases/metabolismo , Flavonoides , Lignina/metabolismo , Oryza/genética , Oryza/metabolismo
4.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806361

RESUMO

Plant metabolism, including primary metabolism such as tricarboxylic acid cycle, glycolysis, shikimate and amino acid pathways as well as specialized metabolism such as biosynthesis of phenolics, alkaloids and saponins, contributes to plant survival, growth, development and interactions with the environment. To this end, these metabolic processes are tightly and finely regulated transcriptionally, post-transcriptionally, translationally and post-translationally in response to different growth and developmental stages as well as the constantly changing environment. In this review, we summarize and describe the current knowledge of the regulation of plant metabolism by alternative splicing, a post-transcriptional regulatory mechanism that generates multiple protein isoforms from a single gene by using alternative splice sites during splicing. Numerous genes in plant metabolism have been shown to be alternatively spliced under different developmental stages and stress conditions. In particular, alternative splicing serves as a regulatory mechanism to fine-tune plant metabolism by altering biochemical activities, interaction and subcellular localization of proteins encoded by splice isoforms of various genes.


Assuntos
Processamento Alternativo , Plantas , Plantas/genética , Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA
5.
Plant J ; 104(1): 156-170, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32623768

RESUMO

The existence and formation of covalent lignin-carbohydrate (LC) linkages in plant cell walls has long been a matter of debate in terms of their roles in cell wall development and biomass use. Of the various putative LC linkages proposed to date, evidence of the native existence and formation mechanism of phenyl glycoside (PG)-type LC linkages in planta is particularly scarce. The present study aimed to explore previously overlooked mechanisms for the formation of PG-type LC linkages through the incorporation of monolignol glucosides, which are possible lignin precursors, into lignin polymers during lignification. Peroxidase-catalyzed lignin polymerization of coniferyl alcohol in the presence of coniferin and syringin in vitro resulted in the generation of PG-type LC linkages in synthetic lignin polymers, possibly via nucleophilic addition onto quinone methide (QM) intermediates formed during polymerization. Biomimetic lignin polymerization of coniferin via the ß-glucosidase/peroxidase system also resulted in the generation of PG-type as well as alkyl glycoside-type LC linkages. This occurred via non-enzymatic QM-involving reactions and also via enzymatic transglycosylations involving ß-glucosidase, which was demonstrated by in-depth structural analysis of the synthetic lignins by two-dimensional NMR. We collected heteronuclear single-quantum coherence (HSQC) NMR for native cell wall fractions prepared from pine (Pinus taeda), eucalyptus (Eucalyptus camaldulensis), acacia (Acacia mangium), poplar (Populus × eurarnericana) and bamboo (Phyllostachys edulis) wood samples, which exhibited correlations, albeit at low levels, that were well matched with those of the PG-type LC linkages in synthetic lignins incorporating monolignol glucosides. Overall, our results provide a molecular basis for feasible mechanisms for the generation of PG-type LC linkages from monolignol glucosides and further substantiates their existence in planta.


Assuntos
Metabolismo dos Carboidratos , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Lignina/metabolismo , Acacia/metabolismo , Parede Celular/metabolismo , Eucalyptus/metabolismo , Redes e Vias Metabólicas , Pinus taeda/metabolismo , Poaceae/metabolismo , Populus/metabolismo
6.
New Phytol ; 230(6): 2186-2199, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33570753

RESUMO

The woody stems of coniferous gymnosperms produce specialised compression wood to adjust the stem growth orientation in response to gravitropic stimulation. During this process, tracheids develop a compression-wood-specific S2 L cell wall layer with lignins highly enriched with p-hydroxyphenyl (H)-type units derived from H-type monolignol, whereas lignins produced in the cell walls of normal wood tracheids are exclusively composed of guaiacyl (G)-type units from G-type monolignol with a trace amount of H-type units. We show that laccases, a class of lignin polymerisation enzymes, play a crucial role in the spatially organised polymerisation of H-type and G-type monolignols during compression wood formation in Japanese cypress (Chamaecyparis obtusa). We performed a series of chemical-probe-aided imaging analysis on C. obtusa compression wood cell walls, together with gene expression, protein localisation and enzymatic assays of C. obtusa laccases. Our data indicated that CoLac1 and CoLac3 with differential oxidation activities towards H-type and G-type monolignols were precisely localised to distinct cell wall layers in which H-type and G-type lignin units were preferentially produced during the development of compression wood tracheids. We propose that, not only the spatial localisation of laccases, but also their biochemical characteristics dictate the spatial patterning of lignin polymerisation in gymnosperm compression wood.


Assuntos
Lignina , Madeira , Cycadopsida , Lacase , Polímeros
7.
Dev Biol ; 451(1): 86-95, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30193787

RESUMO

Single cell branching during development in vertebrates is typified by neuronal branching to form neurites and vascular branches formed by sprouting angiogenesis. Neurons and endothelial tip cells possess subcellular protrusions that share many common features from the morphological to the molecular level. Both systems utilize filopodia as their cellular protrusion organelles and depend on specific integrin-mediated adhesions to the local extracellular matrix for guidance in their pathfinding. We discuss the similar molecular machineries involved in these two types of cell branch formation and use their analogy to propose a new mechanism for angiogenic filopodia function, namely as adhesion assembly sites. In support of this model we provide primary data of angiogenesis in zebrafish in vivo showing that the actin assembly factor VASP participates in both filopodia formation and adhesion assembly at the base of the filopodia, enabling forward progress of the tip cell. The use of filopodia and their associated adhesions provide a common mechanism for neuronal and endothelial pathfinding during development in response to extracellular matrix cues.


Assuntos
Adesões Focais/metabolismo , Morfogênese/fisiologia , Neovascularização Fisiológica/fisiologia , Pseudópodes/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Orientação de Axônios/fisiologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Adesões Focais/genética , Pseudópodes/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
J Am Chem Soc ; 142(41): 17457-17468, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32966062

RESUMO

Chemo-optogenetics has produced powerful tools for optical control of cell activity, but current tools suffer from a variety of limitations including low unitary conductance, the need to modify the target channel, or the inability to control both on and off switching. Using a zebrafish behavior-based screening strategy, we discovered "TRPswitch", a photoswitchable nonelectrophilic ligand scaffold for the transient receptor potential ankyrin 1 (TRPA1) channel. TRPA1 exhibits high unitary channel conductance, making it an ideal target for chemo-optogenetic tool development. Key molecular determinants for the activity of TRPswitch were elucidated and allowed for replacement of the TRPswitch azobenzene with a next-generation azoheteroarene. The TRPswitch compounds enable reversible, repeatable, and nearly quantitative light-induced activation and deactivation of the vertebrate TRPA1 channel with violet and green light, respectively. The utility of TRPswitch compounds was demonstrated in larval zebrafish hearts exogenously expressing zebrafish Trpa1b, where the heartbeat could be controlled using TRPswitch and light. Therefore, TRPA1/TRPswitch represents a novel step-function chemo-optogenetic system with a unique combination of high conductance, high efficiency, activity against an unmodified vertebrate channel, and capacity for bidirectional optical switching. This chemo-optogenetic system will be particularly applicable in systems where a large depolarization current is needed or sustained channel activation is desirable.


Assuntos
Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Compostos Azo/metabolismo , Comportamento Animal/efeitos da radiação , Cor , Regulação da Expressão Gênica , Células HEK293 , Coração , Sistema de Condução Cardíaco/metabolismo , Humanos , Ativação do Canal Iônico , Ligantes , Luz , Optogenética , Peixe-Zebra
9.
Chembiochem ; 21(13): 1905-1910, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32003101

RESUMO

Doxorubicin is a highly effective chemotherapy agent used to treat many common malignancies. However, its use is limited by cardiotoxicity, and cumulative doses exponentially increase the risk of heart failure. To identify novel heart failure treatment targets, a zebrafish model of doxorubicin-induced cardiomyopathy was previously established for small-molecule screening. Using this model, several small molecules that prevent doxorubicin-induced cardiotoxicity both in zebrafish and in mouse models have previously been identified. In this study, exploration of doxorubicin cardiotoxicity is expanded by screening 2271 small molecules from a proprietary, target-annotated tool compound collection. It is found that 120 small molecules can prevent doxorubicin-induced cardiotoxicity, including 7 highly effective compounds. Of these, all seven exhibited inhibitory activity towards cytochrome P450 family 1 (CYP1). These results are consistent with previous findings, in which visnagin, a CYP1 inhibitor, also prevents doxorubicin-induced cardiotoxicity. Importantly, genetic mutation of cyp1a protected zebrafish against doxorubicin-induced cardiotoxicity phenotypes. Together, these results provide strong evidence that CYP1 is an important contributor to doxorubicin-induced cardiotoxicity and highlight the CYP1 pathway as a candidate therapeutic target for clinical cardioprotection.


Assuntos
Cardiomiopatias/prevenção & controle , Família 1 do Citocromo P450/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Família 1 do Citocromo P450/antagonistas & inibidores , Família 1 do Citocromo P450/genética , Modelos Animais de Doenças , Doxorrubicina/toxicidade , Insuficiência Cardíaca , Mutagênese , Fenótipo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
10.
New Phytol ; 228(1): 269-284, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32083753

RESUMO

Tricin (3',5'-dimethoxylated flavone) is a predominant flavonoid amongst monocots but occurs only in isolated and unrelated dicot lineages. Although tricin biosynthesis has been intensively studied in monocots, it has remained largely elusive in tricin-accumulating dicots. We investigated a subgroup of cytochrome P450 (CYP) 75B subfamily flavonoid B-ring hydroxylases (FBHs) from two tricin-accumulating legumes, Medicago truncatula and alfalfa (Medicago sativa), by phylogenetic, molecular, biochemical and mutant analyses. Five Medicago cytochrome P450 CYP75B FBHs are phylogenetically distant from other legume CYP75B members. Among them, MtFBH-4, MsFBH-4 and MsFBH-10 were expressed in tricin-accumulating vegetative tissues. In vitro and in planta analyses demonstrated that these proteins catalyze 3'- and 5'-hydroxylations critical to tricin biosynthesis. A key amino acid polymorphism, T492G, at their substrate recognition site 6 domain is required for the novel 5'-hydroxylation activities. Medicago truncatula mtfbh-4 mutants were tricin-deficient, indicating that MtFBH-4 is indispensable for tricin biosynthesis. Our results revealed that these Medicago legumes had acquired the tricin pathway through molecular evolution of CYP75B FBHs subsequent to speciation from other nontricin-accumulating legumes. Moreover, their evolution is independent of that of grass-specific CYP75B apigenin 3'-hydroxylases/chrysoeriol 5'-hydroxylases dedicated to tricin production and Asteraceae CYP75B flavonoid 3',5'-hydroxylases catalyzing the production of delphinidin-based pigments.


Assuntos
Flavonoides , Medicago truncatula , Sistema Enzimático do Citocromo P-450/genética , Medicago truncatula/genética , Filogenia
11.
New Phytol ; 226(4): 1074-1087, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31909485

RESUMO

Lignin is a major component of cell wall biomass and decisively affects biomass utilisation. Engineering of lignin biosynthesis is extensively studied, while lignin modification often causes growth defects. We developed a strategy for cell-type-specific modification of lignin to achieve improvements in cell wall property without growth penalty. We targeted a lignin-related transcription factor, LTF1, for modification of lignin biosynthesis. LTF1 can be engineered to a nonphosphorylation form which is introduced into Populus under the control of either a vessel-specific or fibre-specific promoter. The transgenics with lignin suppression in vessels showed severe dwarfism and thin-walled vessels, while the transgenics with lignin suppression in fibres displayed vigorous growth with normal vessels under phytotron, glasshouse and field conditions. In-depth lignin structural analyses revealed that such cell-type-specific downregulation of lignin biosynthesis led to the alteration of overall lignin composition in xylem tissues reflecting the population of distinctive lignin polymers produced in vessel and fibre cells. This study demonstrates that fibre-specific suppression of lignin biosynthesis resulted in the improvement of wood biomass quality and saccharification efficiency and presents an effective strategy to precisely regulate lignin biosynthesis with desired growth performance.


Assuntos
Populus , Biomassa , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Madeira/metabolismo , Xilema/metabolismo
12.
J Exp Bot ; 71(16): 4715-4728, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32386058

RESUMO

Flavonoids are essential for male fertility in some but not all plant species. In rice (Oryza sativa), the chalcone synthase mutant oschs1 produces flavonoid-depleted pollen and is male sterile. The mutant pollen grains are viable with normal structure, but they display reduced germination rate and pollen-tube length. Analysis of oschs1/+ heterozygous lines shows that pollen flavonoid deposition is a paternal effect and fertility is independent of the haploid genotypes (OsCHS1 or oschs1). To understand which classes of flavonoids are involved in male fertility, we conducted detailed analysis of rice mutants for branch-point enzymes of the downstream flavonoid pathways, including flavanone 3-hydroxylase (OsF3H; flavonol pathway entry enzyme), flavone synthase II (CYP93G1; flavone pathway entry enzyme), and flavanone 2-hydroxylase (CYP93G2; flavone C-glycoside pathway entry enzyme). Rice osf3h and cyp93g1 cyp93g2 CRISPR/Cas9 mutants, and cyp93g1 and cyp93g2 T-DNA insertion mutants showed altered flavonoid profiles in anthers, but only the osf3h and cyp93g1 cyp93g2 mutants displayed reduction in seed yield. Our findings indicate that flavonoids are essential for complete male fertility in rice and a combination of different classes (flavanones, flavonols, flavones, and flavone C-glycosides) appears to be important, as opposed to the essential role played primarily by flavonols that has been previously reported in several plant species.


Assuntos
Oryza , Fertilidade , Flavonoides , Flavonóis , Oryza/genética , Sementes
13.
Nat Chem Biol ; 14(9): 844-852, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29988067

RESUMO

Primordial germ cells (PGCs) form during early embryogenesis with a supply of maternal mRNAs that contain shorter poly(A) tails. How translation of maternal mRNAs is regulated during PGC development remains elusive. Here we describe a small-molecule screen with zebrafish embryos that identified primordazine, a compound that selectively ablates PGCs. Primordazine's effect on PGCs arises from translation repression through primordazine-response elements in the 3' UTRs. Systematic dissection of primordazine's mechanism of action revealed that translation of mRNAs during early embryogenesis occurs by two distinct pathways, depending on the length of their poly(A) tails. In addition to poly(A)-tail-dependent translation (PAT), early embryos perform poly(A)-tail-independent noncanonical translation (PAINT) via deadenylated 3' UTRs. Primordazine inhibits PAINT without inhibiting PAT, an effect that was also observed in quiescent, but not proliferating, mammalian cells. These studies reveal that PAINT is an alternative form of translation in the early embryo and is indispensable for PGC maintenance.


Assuntos
Regiões 3' não Traduzidas/genética , Células Germinativas/metabolismo , Iniciação Traducional da Cadeia Peptídica/genética , Animais , Linhagem Celular Tumoral , Hidrazinas/farmacologia , Camundongos , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Peixe-Zebra
14.
J Nat Prod ; 83(4): 1249-1257, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32186874

RESUMO

Calcium homeostasis is implicated in some cancers, leading to the possibility that selective control of calcium might lead to new cancer drugs. On the basis of this idea, we designed an assay using a glioblastoma cell line and screened a collection of 1000 unique bacterial extracts. Isolation of the active compound from a hit extract led to the identification of boholamide A (1), a 4-amido-2,4-pentadieneoate (APD)-class peptide. Boholamide A (1) applied in the nanomolar range induces an immediate influx of Ca2+ in glioblastoma and neuronal cells. APD-class natural products are hypoxia-selective cytotoxins that primarily target mitochondria. Like other APD-containing compounds, 1 is hypoxia selective. Since APD natural products have received significant interest as potential chemotherapeutic agents, 1 provides a novel APD scaffold for the development of new anticancer compounds.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Cálcio/metabolismo , Citotoxinas/farmacologia , Depsipeptídeos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Cálcio/química , Citotoxinas/química , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Hipóxia/fisiopatologia , Estrutura Molecular , Neoplasias
15.
J Cell Sci ; 130(22): 3801-3808, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28972134

RESUMO

Cell motility is required for diverse processes during immunity and inflammation. Classically, leukocyte motility is defined as an amoeboid type of migration, however some leukocytes, like macrophages, also employ a more mesenchymal mode of migration. Here, we sought to characterize the mechanisms that regulate neutrophil and macrophage migration in vivo by using real-time imaging of leukocyte motility within interstitial tissues in zebrafish larvae. Neutrophils displayed a rounded morphology and rapid protease-independent motility, lacked defined paxillin puncta, and had persistent rearward polarization of stable F-actin and the microtubule network. By contrast, macrophages displayed an elongated morphology with reduced speed and increased directional persistence and formed paxillin-containing puncta but had a less-defined polarization of the microtubule and actin networks. We also observed differential effects of protease inhibition, microtubule disruption and ROCK inhibition on the efficiency of neutrophil and macrophage motility. Taken together, our findings suggest that larval zebrafish neutrophils and macrophage display distinct modes of migration within interstitial tissues in vivo.


Assuntos
Macrófagos/fisiologia , Neutrófilos/fisiologia , Animais , Movimento Celular , Polaridade Celular , Forma Celular , Rastreamento de Células , Larva/citologia , Microscopia de Fluorescência , Microscopia de Vídeo , Microtúbulos/metabolismo , Paxilina/fisiologia , Peptídeo Hidrolases/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
16.
New Phytol ; 223(1): 204-219, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883799

RESUMO

In rice (Oryza sativa), OsF2H and OsFNSII direct flavanones to independent pathways that form soluble flavone C-glycosides and tricin-type metabolites (both soluble and lignin-bound), respectively. Production of soluble tricin metabolites requires CYP75B4 as a chrysoeriol 5'-hydroxylase. Meanwhile, the close homologue CYP75B3 is a canonical flavonoid 3'-hydroxylase (F3'H). However, their precise roles in the biosynthesis of soluble flavone C-glycosides and tricin-lignins in cell walls remain unknown. We examined CYP75B3 and CYP75B4 expression in vegetative tissues, analyzed extractable flavonoid profiles, cell wall structure and digestibility of their mutants, and investigated catalytic activities of CYP75B4 orthologues in grasses. CYP75B3 and CYP75B4 showed co-expression patterns with OsF2H and OsFNSII, respectively. CYP75B3 is the sole F3'H in flavone C-glycosides biosynthesis, whereas CYP75B4 alone provides sufficient 3',5'-hydroxylation for tricin-lignin deposition. CYP75B4 mutation results in production of apigenin-incorporated lignin and enhancement of cell wall digestibility. Moreover, tricin pathway-specific 3',5'-hydroxylation activities are conserved in sorghum CYP75B97 and switchgrass CYP75B11. CYP75B3 and CYP75B4 represent two different pathway-specific enzymes recruited together with OsF2H and OsFNSII, respectively. Interestingly, the OsF2H-CYP75B3 and OsFNSII-CYP75B4 pairs appear to be conserved in grasses. Finally, manipulation of tricin biosynthesis through CYP75B4 orthologues can be a promising strategy to improve digestibility of grass biomass for biofuel and biomaterial production.


Assuntos
Vias Biossintéticas , Flavonas/metabolismo , Flavonoides/metabolismo , Metaboloma , Oxigenases de Função Mista/metabolismo , Poaceae/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonas/química , Flavonoides/química , Regulação da Expressão Gênica de Plantas , Glicosídeos/metabolismo , Lignina/metabolismo , Espectroscopia de Ressonância Magnética , Mutação/genética , Oryza/metabolismo , Panicum/metabolismo , Solubilidade , Sorghum/metabolismo
17.
Plant Physiol ; 174(2): 972-985, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28385728

RESUMO

Lignin, a ubiquitous phenylpropanoid polymer in vascular plant cell walls, is derived primarily from oxidative couplings of monolignols (p-hydroxycinnamyl alcohols). It was discovered recently that a wide range of grasses, including cereals, utilize a member of the flavonoids, tricin (3',5'-dimethoxyflavone), as a natural comonomer with monolignols for cell wall lignification. Previously, we established that cytochrome P450 93G1 is a flavone synthase II (OsFNSII) indispensable for the biosynthesis of soluble tricin-derived metabolites in rice (Oryza sativa). Here, our tricin-deficient fnsII mutant was analyzed further with an emphasis on its cell wall structure and properties. The mutant is similar in growth to wild-type control plants with normal vascular morphology. Chemical and nuclear magnetic resonance structural analyses demonstrated that the mutant lignin is completely devoid of tricin, indicating that FNSII activity is essential for the deposition of tricin-bound lignin in rice cell walls. The mutant also showed substantially reduced lignin content with decreased syringyl/guaiacyl lignin unit composition. Interestingly, the loss of tricin in the mutant lignin appears to be partially compensated by incorporating naringenin, which is a preferred substrate of OsFNSII. The fnsII mutant was further revealed to have enhanced enzymatic saccharification efficiency, suggesting that the cell wall recalcitrance of grass biomass may be reduced through the manipulation of the flavonoid monomer supply for lignification.


Assuntos
Biomassa , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo , Oryza/enzimologia , Vias Biossintéticas/genética , Parede Celular/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Espectroscopia de Ressonância Magnética , Mutação/genética , Oryza/genética , Fenótipo
18.
Cell Microbiol ; 18(4): 591-604, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26468080

RESUMO

The inflammasome is an innate immune complex whose rapid inflammatory outputs play a critical role in controlling infection; however, the host cells that mediate inflammasome responses in vivo are not well defined. Using zebrafish larvae, we examined the cellular immune responses to inflammasome activation during infection. We compared the host responses with two Listeria monocytogenes strains: wild type and Lm-pyro, a strain engineered to activate the inflammasome via ectopic expression of flagellin. Infection with Lm-pyro led to activation of the inflammasome, macrophage pyroptosis and ultimately attenuation of virulence. Depletion of caspase A, the zebrafish caspase-1 homolog, restored Lm-pyro virulence. Inflammasome activation specifically recruited macrophages to infection sites, whereas neutrophils were equally recruited to wild type and Lm-pyro infections. Similar to caspase A depletion, macrophage deficiency rescued Lm-pyro virulence to wild-type levels, while defective neutrophils had no specific effect. Neutrophils were, however, important for general clearance of L. monocytogenes, as both wild type and Lm-pyro were more virulent in larvae with defective neutrophils. This study characterizes a novel model for inflammasome studies in an intact host, establishes the importance of macrophages during inflammasome responses and adds importance to the role of neutrophils in controlling L. monocytogenes infections.


Assuntos
Flagelina/imunologia , Inflamassomos/metabolismo , Listeria monocytogenes/imunologia , Macrófagos/imunologia , Peixe-Zebra/imunologia , Animais , Modelos Animais de Doenças , Listeriose/imunologia , Listeriose/patologia , Neutrófilos/imunologia , Piroptose
19.
Plant Physiol ; 168(4): 1527-36, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26082402

RESUMO

Flavones are ubiquitously accumulated in land plants, but their biosynthesis in monocots remained largely elusive until recent years. Recently, we demonstrated that the rice (Oryza sativa) cytochrome P450 enzymes CYP93G1 and CYP93G2 channel flavanones en route to flavone O-linked conjugates and C-glycosides, respectively. In tricin, the 3',5'-dimethoxyflavone nucleus is formed before O-linked conjugations. Previously, flavonoid 3',5'-hydroxylases belonging to the CYP75A subfamily were believed to generate tricetin from apigenin for 3',5'-O-methylation to form tricin. However, we report here that CYP75B4 a unique flavonoid B-ring hydroxylase indispensable for tricin formation in rice. A CYP75B4 knockout mutant is tricin deficient, with unusual accumulation of chrysoeriol (a 3'-methoxylated flavone). CYP75B4 functions as a bona fide flavonoid 3'-hydroxylase by restoring the accumulation of 3'-hydroxylated flavonoids in Arabidopsis (Arabidopsis thaliana) transparent testa7 mutants and catalyzing in vitro 3'-hydroxylation of different flavonoids. In addition, overexpression of both CYP75B4 and CYP93G1 (a flavone synthase II) in Arabidopsis resulted in tricin accumulation. Specific 5'-hydroxylation of chrysoeriol to selgin by CYP75B4 was further demonstrated in vitro. The reaction steps leading to tricin biosynthesis are then reconstructed as naringenin → apigenin → luteolin → chrysoeriol → selgin → tricin. Hence, chrysoeriol, instead of tricetin, is an intermediate in tricin biosynthesis. CYP75B4 homologous sequences are highly conserved in Poaceae, and they are phylogenetically distinct from the canonical CYP75B flavonoid 3'-hydroxylase sequences. Recruitment of chrysoeriol-specific 5'-hydroxylase activity by an ancestral CYP75B sequence may represent a key event leading to the prevalence of tricin-derived metabolites in grasses and other monocots today.


Assuntos
Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Flavonoides/biossíntese , Oxigenases de Função Mista/genética , Oryza/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonas/metabolismo , Técnicas de Inativação de Genes , Hidroxilação , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Mutação , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA