Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Genet ; 19(3): e1010677, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36952570

RESUMO

The standard neutral model of molecular evolution has traditionally been used as the null model for population genomics. We gathered a collection of 45 genome-wide site frequency spectra from a diverse set of species, most of which display an excess of low and high frequency variants compared to the expectation of the standard neutral model, resulting in U-shaped spectra. We show that multiple merger coalescent models often provide a better fit to these observations than the standard Kingman coalescent. Hence, in many circumstances these under-utilized models may serve as the more appropriate reference for genomic analyses. We further discuss the underlying evolutionary processes that may result in the widespread U-shape of frequency spectra.


Assuntos
Evolução Biológica , Evolução Molecular , Modelos Genéticos
2.
Theor Popul Biol ; 158: 89-108, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493997

RESUMO

New automated and high-throughput methods allow the manipulation and selection of numerous bacterial populations. In this manuscript we are interested in the neutral diversity patterns that emerge from such a setup in which many bacterial populations are grown in parallel serial transfers, in some cases with population-wide extinction and splitting events. We model bacterial growth by a birth-death process and use the theory of coalescent point processes. We show that there is a dilution factor that optimises the expected amount of neutral diversity for a given number of cycles, and study the power law behaviour of the mutation frequency spectrum for different experimental regimes. We also explore how neutral variation diverges between two recently split populations by establishing a new formula for the expected number of shared and private mutations. Finally, we show the interest of such a setup to select a phenotype of interest that requires multiple mutations.

3.
Syst Biol ; 71(4): 823-838, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34792608

RESUMO

An evolutionary process is reflected in the sequence of changes of any trait (e.g., morphological or molecular) through time. Yet, a better understanding of evolution would be procured by characterizing correlated evolution, or when two or more evolutionary processes interact. Previously developed parametric methods often require significant computing time as they rely on the estimation of many parameters. Here, we propose a minimal likelihood framework modeling the joint evolution of two traits on a known phylogenetic tree. The type and strength of correlated evolution are characterized by a few parameters tuning mutation rates of each trait and interdependencies between these rates. The framework can be applied to study any discrete trait or character ranging from nucleotide substitution to gain or loss of a biological function. More specifically, it can be used to 1) test for independence between two evolutionary processes, 2) identify the type of interaction between them, and 3) estimate parameter values of the most likely model of interaction. In the current implementation, the method takes as input a phylogenetic tree with discrete evolutionary events mapped on its branches. The method then maximizes the likelihood for one or several chosen scenarios. The strengths and limits of the method, as well as its relative power compared to a few other methods, are assessed using both simulations and data from 16S rRNA sequences in a sample of 54 $\gamma$-enterobacteria. We show that, even with data sets of fewer than 100 species, the method performs well in parameter estimation and in evolutionary model selection. [Correlated evolution; maximum likelihood; model.].


Assuntos
Evolução Biológica , Evolução Molecular , Funções Verossimilhança , Modelos Genéticos , Fenótipo , Filogenia , RNA Ribossômico 16S
4.
J Math Biol ; 85(4): 43, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36169721

RESUMO

We present a unifying, tractable approach for studying the spread of viruses causing complex diseases requiring to be modeled using a large number of types (e.g., infective stage, clinical state, risk factor class). We show that recording each infected individual's infection age, i.e., the time elapsed since infection, has three benefits. First, regardless of the number of types, the age distribution of the population can be described by means of a first-order, one-dimensional partial differential equation (PDE) known as the McKendrick-von Foerster equation. The frequency of type i is simply obtained by integrating the probability of being in state i at a given age against the age distribution. This representation induces a simple methodology based on the additional assumption of Poisson sampling to infer and forecast the epidemic. We illustrate this technique using French data from the COVID-19 epidemic. Second, our approach generalizes and simplifies standard compartmental models using high-dimensional systems of ordinary differential equations (ODEs) to account for disease complexity. We show that such models can always be rewritten in our framework, thus, providing a low-dimensional yet equivalent representation of these complex models. Third, beyond the simplicity of the approach, we show that our population model naturally appears as a universal scaling limit of a large class of fully stochastic individual-based epidemic models, where the initial condition of the PDE emerges as the limiting age structure of an exponentially growing population starting from a single individual.


Assuntos
COVID-19 , Epidemias , COVID-19/epidemiologia , Previsões , Humanos , Modelos Biológicos , Probabilidade
5.
Mol Biol Evol ; 37(11): 3308-3323, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521005

RESUMO

In standard models of molecular evolution, DNA sequences evolve through asynchronous substitutions according to Poisson processes with a constant rate (called the molecular clock) or a rate that can vary (relaxed clock). However, DNA sequences can also undergo episodes of fast divergence that will appear as synchronous substitutions affecting several sites simultaneously at the macroevolutionary timescale. Here, we develop a model, which we call the Relaxed Clock with Spikes model, combining basal, clock-like molecular substitutions with episodes of fast divergence called spikes arising at speciation events. Given a multiple sequence alignment and its time-calibrated species phylogeny, our model is able to detect speciation events (including hidden ones) cooccurring with spike events and to estimate the probability and amplitude of these spikes on the phylogeny. We identify the conditions under which spikes can be distinguished from the natural variance of the clock-like component of molecular substitutions and from variations of the clock. We apply the method to genes underlying snake venom proteins and identify several spikes at gene-specific locations in the phylogeny. This work should pave the way for analyses relying on whole genomes to inform on modes of species diversification.


Assuntos
Evolução Molecular , Modelos Genéticos , Relógios Biológicos , Filogenia , Venenos de Serpentes
6.
Theor Popul Biol ; 134: 171-181, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32278682

RESUMO

Only 6% of known species have a conservation status. Methods that assess conservation statuses are often based on individual counts and are thus too laborious to be generalized to all species. Population genomics methods that infer past variations in population size are easy to use but limited to the relatively distant past. Here we propose a population genomics approach that tests for recent population decline and may be used to assess species conservation statuses. More specifically, we study Maximal Recombination Free (MRF) blocks, that are segments of a sequence alignment inherited from a common ancestor without recombination. MRF blocks are relatively longer in small than in large populations. We use the distribution of MRF block lengths rescaled by their mean to test for recent population decline. However, because MRF blocks are difficult to detect, we also consider Maximal Linkage Disequilibrium (MLD) blocks, which are runs of single nucleotide polymorphisms compatible with a single tree. We develop a new method capable of inferring a very recent decline (e.g. with a detection power of 50% for populations whose size was halved to N, 0.05 ×N generations ago) from rescaled MLD block lengths. Our framework could serve as a basis for quantitative tools to assess conservation status in a wide range of species.


Assuntos
Polimorfismo de Nucleotídeo Único , Animais , Desequilíbrio de Ligação , Densidade Demográfica
7.
J Evol Biol ; 33(10): 1387-1404, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32654283

RESUMO

The process of species diversification is traditionally summarized by a single tree, the species tree, whose reconstruction from molecular data is hindered by frequent conflicts between gene genealogies. Here, we argue that instead of seeing these conflicts as nuisances, we can exploit them to inform the diversification process itself. We adopt a gene-based view of diversification to model the ubiquitous presence of gene flow between diverging lineages, one of the most important processes explaining disagreements among gene trees. We propose a new framework for modelling the joint evolution of gene and species lineages relaxing the hierarchy between the species tree and gene trees inherent to the standard view, as embodied in a popular model known as the multispecies coalescent (MSC). We implement this framework in two alternative models called the gene-based diversification models (GBD): (a) GBD-forward following all evolving genomes through time and (b) GBD-backward based on coalescent theory. They feature four parameters tuning colonization, gene flow, genetic drift and genetic differentiation. We propose an inference method based on differences between gene trees. Applied to two empirical data sets prone to gene flow, we find better support for the GBD-backward model than for the MSC model. Along with the increasing awareness of the extent of gene flow, this work shows the importance of considering the richer signal contained in genomic histories, rather than in the mere species tree, to better apprehend the complex evolutionary history of species.


Assuntos
Fluxo Gênico , Especiação Genética , Genoma , Modelos Genéticos , Filogenia
8.
Syst Biol ; 67(6): 1025-1040, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669054

RESUMO

Phylogenetic diversity (PD) is a measure of the evolutionary legacy of a group of species, which can be used to define conservation priorities. It has been shown that an important loss of species diversity can sometimes lead to a much less important loss of PD, depending on the topology of the species tree and on the distribution of its branch lengths. However, the rate of decrease of PD strongly depends on the relative depths of the nodes in the tree and on the order in which species become extinct. We introduce a new, sampling-consistent, three-parameter model generating random trees with covarying topology, clades relative depths, and clades relative extinction risks. This model can be seen as an extension to Aldous' one parameter splitting model ($\beta$, which controls for tree balance) with two additional parameters: a new parameter $\alpha$ quantifying the relation between age and richness of subclades, and a parameter $\eta$ quantifying the relation between relative abundance and richness of subclades, taken herein as a proxy for overall extinction risk. We show on simulated phylogenies that loss of PD depends on the combined effect of all three parameters, $\beta$, $\alpha,$ and $\eta$. In particular, PD may decrease as fast as species diversity when high extinction risks are clustered within small, old clades, corresponding to a parameter range that we term the "danger zone" ($\beta<-1$ or $\alpha<0$; $\eta>1$). Besides, when high extinction risks are clustered within large clades, the loss of PD can be higher in trees that are more balanced ($\beta>0$), in contrast to the predictions of earlier studies based on simpler models. We propose a Monte-Carlo algorithm, tested on simulated data, to infer all three parameters. Applying it to a real data set comprising 120 bird clades (class Aves) with known range sizes, we show that parameter estimates precisely fall close to the danger zone: the combination of their ranking tree shape and nonrandom extinctions risks makes them prone to a sudden collapse of PD.


Assuntos
Biodiversidade , Extinção Biológica , Modelos Biológicos , Filogenia , Algoritmos , Classificação , Método de Monte Carlo
9.
Bull Math Biol ; 81(3): 878-898, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30535845

RESUMO

How to define a partition of individuals into species is a long-standing question called the species problem in systematics. Here, we focus on this problem in the thought experiment where individuals reproduce clonally and both the differentiation process and the population genealogies are explicitly known. We specify three desirable properties of species partitions: (A) Heterotypy between species, (B) Homotypy within species and (M) Genealogical monophyly of each species. We then ask: How and when is it possible to delineate species in a way satisfying these properties? We point out that the three desirable properties cannot in general be satisfied simultaneously, but that any two of them can. We mathematically prove the existence of the finest partition satisfying (A) and (M) and the coarsest partition satisfying (B) and (M). For each of them, we propose a simple algorithm to build the associated phylogeny out of the genealogy. The ways we propose to phrase the species problem shed new light on the interaction between the genealogical and phylogenetic scales in modeling work. The two definitions centered on the monophyly property can readily be used at a higher taxonomic level as well, e.g., to cluster species into monophyletic genera.


Assuntos
Evolução Biológica , Modelos Genéticos , Filogenia , Animais , Especiação Genética , Conceitos Matemáticos , Mutação , Especificidade da Espécie , Biologia de Sistemas
10.
Theor Popul Biol ; 122: 30-35, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29704514

RESUMO

At time 0, start a time-continuous binary branching process, where particles give birth to a single particle independently (at a possibly time-dependent rate) and die independently (at a possibly time-dependent and age-dependent rate). A particular case is the classical birth-death process. Stop this process at time T>0. It is known that the tree spanned by the N tips alive at time T of the tree thus obtained (called a reduced tree or coalescent tree) is a coalescent point process (CPP), which basically means that the depths of interior nodes are independent and identically distributed (iid). Now select each of the N tips independently with probability y (Bernoulli sample). It is known that the tree generated by the selected tips, which we will call the Bernoulli sampled CPP, is again a CPP. Now instead, select exactly k tips uniformly at random among the N tips (a k-sample). We show that the tree generated by the selected tips is a mixture of Bernoulli sampled CPPs with the same parent CPP, over some explicit distribution of the sampling probability y. An immediate consequence is that the genealogy of a k-sample can be obtained by the realization of k random variables, first the random sampling probability Y and then the k-1 node depths which are iid conditional on Y=y.


Assuntos
Distribuição Binomial , Genética Populacional , Modelos Genéticos , Probabilidade , Algoritmos , Animais , Coeficiente de Natalidade , Morte , Genealogia e Heráldica , Humanos , Mortalidade , Parto
11.
Syst Biol ; 66(4): 551-568, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003533

RESUMO

Models of phenotypic evolution fit to phylogenetic comparative data are widely used to make inferences regarding the tempo and mode of trait evolution. A wide range of models is already available for this type of analysis, and the field is still under active development. One of the most needed development concerns models that better account for the effect of within- and between-clade interspecific interactions on trait evolution, which can result from processes as diverse as competition, predation, parasitism, or mutualism. Here, we begin by developing a very general comparative phylogenetic framework for (multi)-trait evolution that can be applied to both ultrametric and nonultrametric trees. This framework not only encapsulates many previous models of continuous univariate and multivariate phenotypic evolution, but also paves the way for the consideration of a much broader series of models in which lineages coevolve, meaning that trait changes in one lineage are influenced by the value of traits in other, interacting lineages. Next, we provide a standard way for deriving the probabilistic distribution of traits at tip branches under our framework. We show that a multivariate normal distribution remains the expected distribution for a broad class of models accounting for interspecific interactions. Our derivations allow us to fit various models efficiently, and in particular greatly reduce the computation time needed to fit the recently proposed phenotype matching model. Finally, we illustrate the utility of our framework by developing a toy model for mutualistic coevolution. Our framework should foster a new era in the study of coevolution from comparative data.


Assuntos
Modelos Biológicos , Filogenia , Fenótipo , Simbiose
13.
Proc Natl Acad Sci U S A ; 112(25): 7761-6, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056308

RESUMO

Since the 1980s, many have suggested we are in the midst of a massive extinction crisis, yet only 799 (0.04%) of the 1.9 million known recent species are recorded as extinct, questioning the reality of the crisis. This low figure is due to the fact that the status of very few invertebrates, which represent the bulk of biodiversity, have been evaluated. Here we show, based on extrapolation from a random sample of land snail species via two independent approaches, that we may already have lost 7% (130,000 extinctions) of the species on Earth. However, this loss is masked by the emphasis on terrestrial vertebrates, the target of most conservation actions. Projections of species extinction rates are controversial because invertebrates are essentially excluded from these scenarios. Invertebrates can and must be assessed if we are to obtain a more realistic picture of the sixth extinction crisis.


Assuntos
Biodiversidade , Extinção Biológica , Caramujos/classificação , Animais , Conservação dos Recursos Naturais , Processos Estocásticos
14.
Mol Biol Evol ; 33(7): 1711-25, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26931140

RESUMO

Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescent-based approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion. This surprising result led us to analyze the impact of natural selection, recombination (gene conversion), and sampling biases on demographic inference using skyline plots and site frequency spectra (SFS). Forward simulations based on biologically relevant parameters from Escherichia coli populations showed that theoretical arguments on the detrimental impact of recombination and especially natural selection on the reconstructed genealogies cannot be ignored in practice. In fact, both processes systematically lead to spurious interpretations of population expansion in skyline plots (and in SFS for selection). Weak purifying selection, and especially positive selection, had important effects on skyline plots, showing patterns akin to those of population expansions. State-of-the-art techniques to remove recombination further amplified these biases. We simulated three common sampling biases in microbiological research: uniform, clustered, and mixed sampling. Alone, or together with recombination and selection, they further mislead demographic inferences producing almost any possible skyline shape or SFS. Interestingly, sampling sub-populations also affected skyline plots and SFS, because the coalescent rates of populations and their sub-populations had different distributions. This study suggests that extreme caution is needed to infer demographic changes solely based on reconstructed genealogies. We suggest that the development of novel sampling strategies and the joint analyzes of diverse population genetic methods are strictly necessary to estimate demographic changes in populations where selection, recombination, and biased sampling are present.


Assuntos
Bactérias/genética , Conversão Gênica , Seleção Genética , Evolução Molecular , Variação Genética , Genética Populacional/métodos , Genoma Bacteriano , Metagenômica/métodos , Modelos Genéticos , Viés de Seleção
15.
Syst Biol ; 65(1): 35-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26405218

RESUMO

Several ecological factors that could play into species extinction are expected to correlate with species age, i.e., time elapsed since the species arose by speciation. To date, however, statistical tools to incorporate species age into likelihood-based phylogenetic inference have been lacking. We present here a computational framework to quantify age-dependent extinction through maximum likelihood parameter estimation based on phylogenetic trees, assuming species lifetimes are gamma distributed. Testing on simulated trees shows that neglecting age dependence can lead to biased estimates of key macroevolutionary parameters. We then apply this method to two real data sets, namely a complete phylogeny of birds (class Aves) and a clade of self-compatible and -incompatible nightshades (Solanaceae), gaining initial insights into the extent to which age-dependent extinction may help explain macroevolutionary patterns. Our methods have been added to the R package TreePar.


Assuntos
Classificação/métodos , Extinção Biológica , Modelos Biológicos , Filogenia , Animais , Evolução Biológica , Aves/classificação , Simulação por Computador , Funções Verossimilhança , Solanaceae/classificação , Tempo
16.
Syst Biol ; 65(5): 812-23, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27208890

RESUMO

Evolutionary events co-occurring along phylogenetic trees usually point to complex adaptive phenomena, sometimes implicating epistasis. While a number of methods have been developed to account for co-occurrence of events on the same internal or external branch of an evolutionary tree, there is a need to account for the larger diversity of possible relative positions of events in a tree. Here we propose a method to quantify to what extent two or more evolutionary events are associated on a phylogenetic tree. The method is applicable to any discrete character, like substitutions within a coding sequence or gains/losses of a biological function. Our method uses a general approach to statistically test for significant associations between events along the tree, which encompasses both events inseparable on the same branch, and events genealogically ordered on different branches. It assumes that the phylogeny and themapping of branches is known without errors. We address this problem from the statistical viewpoint by a linear algebra representation of the localization of the evolutionary events on the tree.We compute the full probability distribution of the number of paired events occurring in the same branch or in different branches of the tree, under a null model of independence where each type of event occurs at a constant rate uniformly inthephylogenetic tree. The strengths andweaknesses of themethodare assessed via simulations;we then apply the method to explore the loss of cell motility in intracellular pathogens.


Assuntos
Classificação/métodos , Filogenia , Evolução Biológica , Simulação por Computador , Interpretação Estatística de Dados , Probabilidade
17.
Syst Biol ; 64(4): 590-607, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25771083

RESUMO

Whether biotic or abiotic factors are the dominant drivers of clade diversification is a long-standing question in evolutionary biology. The ubiquitous patterns of phylogenetic imbalance and branching slowdown have been taken as supporting the role of ecological niche filling and spatial heterogeneity in ecological features, and thus of biotic processes, in diversification. However, a proper theoretical assessment of the relative roles of biotic and abiotic factors in macroevolution requires models that integrate both types of factors, and such models have been lacking. In this study, we use an individual-based model to investigate the temporal patterns of diversification driven by ecological speciation in a stochastically fluctuating geographic landscape. The model generates phylogenies whose shape evolves as the clade ages. Stabilization of tree shape often occurs after ecological saturation, revealing species turnover caused by competition and demographic stochasticity. In the initial phase of diversification (allopatric radiation into an empty landscape), trees tend to be unbalanced and branching slows down. As diversification proceeds further due to landscape dynamics, balance and branching tempo may increase and become positive. Three main conclusions follow. First, the phylogenies of ecologically saturated clades do not always exhibit branching slowdown. Branching slowdown requires that competition be wide or heterogeneous across the landscape, or that the characteristics of landscape dynamics vary geographically. Conversely, branching acceleration is predicted under narrow competition or frequent local catastrophes. Second, ecological heterogeneity does not necessarily cause phylogenies to be unbalanced--short time in geographical isolation or frequent local catastrophes may lead to balanced trees despite spatial heterogeneity. Conversely, unbalanced trees can emerge without spatial heterogeneity, notably if competition is wide. Third, short isolation time causes a radically different and quite robust pattern of phylogenies that are balanced and yet exhibit branching slowdown. In conclusion, biotic factors have a strong and diverse influence on the shape of phylogenies of ecologically saturating clades and create the evolutionary template in which branching slowdown and tree imbalance may occur. However, the contingency of landscape dynamics and resource distribution can cause wide variation in branching tempo and tree balance. Finally, considerable variation in tree shape among simulation replicates calls for caution when interpreting variation in the shape of real phylogenies.


Assuntos
Modelos Biológicos , Filogenia , Animais , Simulação por Computador , Ecologia , Geografia , Fatores de Tempo
18.
J Math Biol ; 73(3): 627-64, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26748918

RESUMO

We study a universal object for the genealogy of a sample in populations with mutations: the critical birth-death process with Poissonian mutations, conditioned on its population size at a fixed time horizon. We show how this process arises as the law of the genealogy of a sample in a large class of nearly critical branching populations with rare mutations at birth, namely populations converging, in a large population asymptotic, towards the continuum random tree. We extend this model to populations with random foundation times, with (potentially improper) prior distributions [Formula: see text], [Formula: see text], including the so-called uniform ([Formula: see text]) and log-uniform ([Formula: see text]) priors. We first investigate the mutational patterns arising from these models, by studying the site frequency spectrum of a sample with fixed size, i.e. the number of mutations carried by k individuals in the sample. Explicit formulae for the expected frequency spectrum of a sample are provided, in the cases of a fixed foundation time, and of a uniform and log-uniform prior on the foundation time. Second, we establish the convergence in distribution, for large sample sizes, of the (suitably renormalized) tree spanned by the sample with prior [Formula: see text] on the time of origin. We finally prove that the limiting genealogies with different priors can all be embedded in the same realization of a given Poisson point measure.


Assuntos
Modelos Genéticos , Mutação , Genética Populacional , Humanos , Filogenia
19.
Ecol Lett ; 18(4): 347-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711418

RESUMO

There is a long tradition in ecology of studying models of biodiversity at equilibrium. These models, including the influential Neutral Theory of Biodiversity, have been successful at predicting major macroecological patterns, such as species abundance distributions. But they have failed to predict macroevolutionary patterns, such as those captured in phylogenetic trees. Here, we develop a model of biodiversity in which all individuals have identical demographic rates, metacommunity size is allowed to vary stochastically according to population dynamics, and speciation arises naturally from the accumulation of point mutations. We show that this model generates phylogenies matching those observed in nature if the metacommunity is out of equilibrium. We develop a likelihood inference framework that allows fitting our model to empirical phylogenies, and apply this framework to various mammalian families. Our results corroborate the hypothesis that biodiversity dynamics are out of equilibrium.


Assuntos
Biodiversidade , Ecologia/métodos , Modelos Biológicos , Filogenia , Animais , Simulação por Computador , Especiação Genética , Mamíferos , Dinâmica Populacional
20.
Theor Popul Biol ; 101: 40-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724404

RESUMO

In large populations, the distribution of the trajectory of allele frequencies under selection and genetic drift approaches a semi-deterministic behavior: a deterministic trajectory started and ended at stochastic boundary values. This provides simple yet accurate approximations for the distribution of allelic frequencies over time (conditional on fixation), and of extinction and fixation times, for both hard and soft sweeps, and under arbitrary inbreeding and dominance.


Assuntos
Frequência do Gene , Deriva Genética , Genética Populacional , Modelos Genéticos , Humanos , Dinâmica Populacional , Seleção Genética , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA