Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Sci Technol ; 57(35): 13161-13171, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37610829

RESUMO

Environmental DNA (eDNA) in aquatic systems is a complex mixture that includes dissolved DNA, intracellular DNA, and particle-adsorbed DNA. Information about the various components of eDNA and their relative proportions could be used to discern target organism abundance and location. However, a limited knowledge of eDNA adsorption dynamics and interactions with other materials hinders these applications. To address this gap, we used recirculating stream mesocosms to investigate the impact of suspended materials (fine particulate organic matter, plankton, clay, and titanium dioxide) on the eDNA concentration and particle size distribution (PSD) from two fish species in flowing water. Our findings revealed that eDNA rapidly adsorbs to other materials in the water column, affecting its concentration and PSD. Nonetheless, only particulate organic matter affected eDNA removal rate after 30 h. Moreover, we observed that the removal of larger eDNA components (≥10 µm) was more strongly influenced by physical processes, whereas the removal of smaller eDNA components was driven by biological degradation. This disparity in removal mechanisms between larger and smaller eDNA components could explain changes in eDNA composition over time and space, which have implications for modeling the spatial distribution and abundance of target species and optimizing eDNA detection in high turbidity systems.


Assuntos
DNA Ambiental , Animais , Tamanho da Partícula , Fenômenos Físicos , Adsorção , Material Particulado , Água
2.
Environ Monit Assess ; 196(1): 75, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135786

RESUMO

Mercury (Hg) contamination of aquatic environments can lead to bioaccumulation in organisms, but most previous work has focused on fish and not on semi-aquatic reptiles such as turtles that traverse both terrestrial and aquatic habitats. Here, we analyzed total Hg (THg) concentrations in 30 painted turtles (Chrysemys picta) collected from Lake Michigan (USA) coastal wetlands in 2013 to determine if (1) turtles bioaccumulated THg from the environment, (2) concentrations differed between turtle liver and muscle tissue, and (3) tissue concentrations were related to environmental concentrations (e.g., sediment THg). All individual turtles had detectable THg concentrations in both liver and muscle tissue. On average, THg concentrations were over three times higher in liver tissue compared to muscle tissue. We found a positive linear relationship between muscle THg concentrations and turtle body mass, a proxy for age, suggesting bioaccumulation in this species. Neither liver nor muscle THg concentrations followed the sediment contaminant gradient in the wetlands. Despite this, location was a strong predictor of tissue concentration in a linear model suggesting that other site-specific characteristics may be important. Overall, our results demonstrate that painted turtles accumulate mercury in liver and muscle tissues at different rates, which may be constrained by local conditions. Further research is needed to better understand the relationship between environmental mercury concentrations and body burdens in animals like turtles that traverse habitats. In addition, long-lived turtles could be incorporated into pollution monitoring programs to provide a more holistic picture of food web contamination and ecosystem health.


Assuntos
Mercúrio , Tartarugas , Poluentes Químicos da Água , Animais , Mercúrio/análise , Lagos , Ecossistema , Bioacumulação , Michigan , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
3.
Wetlands (Wilmington) ; 39(6): 1357-1366, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-34326565

RESUMO

Traditionally, ecosystem monitoring, conservation, and restoration have been conducted in a piecemeal manner at the local scale without regional landscape context. However, scientifically driven conservation and restoration decisions benefit greatly when they are based on regionally determined benchmarks and goals. Unfortunately, required data sets rarely exist for regionally important ecosystems. Because of early recognition of the extreme ecological importance of Laurentian Great Lakes coastal wetlands, and the extensive degradation that had already occurred, significant investments in coastal wetland research, protection, and restoration have been made in recent decades and continue today. Continued and refined assessment of wetland condition and trends, and the evaluation of restoration practices are all essential to ensuring the success of these investments. To provide wetland managers and decision makers throughout the Laurentian Great Lakes basin with the optimal tools and data needed to make scientifically-based decisions, our regional team of Great Lakes wetland scientists developed standardized methods and indicators used for assessing wetland condition. From a landscape perspective, at the Laurentian Great Lakes ecosystem scale, we established a stratified random-site-selection process to monitor birds, anurans, fish, macroinvertebrates, vegetation, and physicochemical conditions of coastal wetlands in the US and Canada. Monitoring of approximately 200 wetlands per year began in 2011 as the Great Lakes Coastal Wetland Monitoring Program. In this paper, we describe the development, delivery, and expected results of this ongoing international, multi-disciplinary, multi-stakeholder, landscape-scale monitoring program as a case example of successful application of landscape conservation design.

4.
Environ Monit Assess ; 190(10): 580, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30203154

RESUMO

Biotic indicators are useful for assessing ecosystem health because the structure of resident communities generally reflects abiotic conditions integrated over time. We used fish data collected over 5 years for 470 Great Lakes coastal wetlands to develop multi-metric indices of biotic integrity (IBI). Sampling and IBI development were stratified by vegetation type within each wetland to account for differences in physical habitat. Metrics were evaluated against numerous indices of anthropogenic disturbance derived from water quality and surrounding land-cover variables. Separate datasets were used for IBI development and testing. IBIs were composed of 10-11 metrics for each of four vegetation types (bulrush, cattail, water lily, and submersed aquatic vegetation). Scores of all IBIs correlated well with disturbance indices using the development data, and the accuracy of our IBIs was validated using the testing data. Our fish IBIs can be used to prioritize wetland protection and restoration efforts across the Great Lakes basin. The IBIs will also be useful in monitoring programs mandated by the Agreement between Canada and the United States of America on Great Lakes Water Quality, such as for assessing Beneficial Use Impairments (BUIs) in Great Lakes Areas of Concern, and in other ecosystem management programs in Canada and the USA.


Assuntos
Monitoramento Ambiental , Peixes , Áreas Alagadas , Animais , Biodiversidade , Aves , Canadá , Ecologia , Ecossistema , Lagos , Estados Unidos , Qualidade da Água
5.
Ecology ; 98(5): 1475, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28263380

RESUMO

Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater and marine animals of N and/or P excretion rates. These observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. This data set was used to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).


Assuntos
Organismos Aquáticos/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Animais , Ecossistema , Água Doce , Filogenia
6.
Environ Sci Technol ; 50(2): 554-63, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26641658

RESUMO

In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.


Assuntos
Peixes/metabolismo , Éteres Difenil Halogenados/metabolismo , Bifenilos Policlorados/metabolismo , Poluentes Químicos da Água/metabolismo , Análise de Variância , Animais , Great Lakes Region , Espécies Introduzidas , Rios , Salmão/metabolismo , Truta/metabolismo
7.
Environ Monit Assess ; 188(2): 128, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26832725

RESUMO

Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.


Assuntos
Monitoramento Ambiental , Metais Pesados/metabolismo , Tartarugas/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Carga Corporal (Radioterapia) , Cádmio , Cobre , Ecossistema , Lagos/química , Michigan , Áreas Alagadas
8.
Environ Pollut ; 336: 122355, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567402

RESUMO

Pacific salmon transfer large quantities of material to tributaries during their spawning migrations, including carcass tissue and labile nutrients but also persistent organic pollutants (POPs) and heavy metals. We conducted a Before-After-Control-Intervention experiment by adding salmon carcasses and eggs to a Michigan (USA) stream that had never received inputs from non-native salmon to understand the bioaccumulation and persistence of biotransported contaminants. Our experimental outcomes were compared to previous studies using meta-analysis. Coincident with the introduction of salmon, the PCB and DDE burden of resident trout significantly increased. However, we did not observe changes in total mercury (Hg). Two years after the salmon addition experiment concluded, resident trout POP concentrations had returned to pre-addition levels, with no difference between the treatment and control reaches. Analysis of effect sizes suggested that the contaminant response observed in our experiment is consistent with field survey observations. Our study suggested that the consumption of salmon eggs drove the increase in POP burden of resident trout while Hg bioaccumulation was influenced by watershed sources. Critically, our study suggests that ecosystems are capable of quickly recovering from POP inputs from species migrations if contaminant sources are removed.


Assuntos
Mercúrio , Oncorhynchus , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Rios , Ecossistema , Poluentes Químicos da Água/análise , Salmão , Truta , Mercúrio/análise , Bifenilos Policlorados/análise
9.
Sci Total Environ ; 895: 164903, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355115

RESUMO

We measured perfluoroalkyl substances (PFAS) in prey and predator fish from Lake Michigan (USA) to investigate the occurrence and biomagnification of these compounds in this important ecosystem. Twenty-one PFAS were analyzed in 117 prey fish obtained from sites across Lake Michigan and in 87 salmonids collected in four lake quadrants. The mean concentration of sum (∑) PFAS above the method detection limit was 12.7 ± 6.96 ng g-1 wet weight in predator fish (all of which were salmonids) and 10.7 ± 10.4 ng g-1 in prey fish, with outlier levels found in slimy sculpin, Cottus cognatus (187 ± 12.2 ng g-1 ww). Perfluorooctanoic sulfonic acid (PFOS) was the most frequently detected and most abundant compound of the 21 PFAS, occurring in 98 % of individuals with a mean concentration of 9.86 ± 6.36 ng g-1 ww without outliers. Perfluoroalkyl carboxylates (PFCA) concentrations were higher in prey fish than in predators, with some compounds such as perfluorooctanoic acid (PFOA) being detected in higher frequency in prey fish. Besides PFOS, detection of several long-chain (C8-C12) PFCAs were observed in >80 % of the prey fish. Overall, the observed concentrations in Lake Michigan fish were lower than those reported in other Laurentian Great Lakes except for Lake Superior. Biomagnification factors (BMFs) for PFOS exceeded 1.0 (range, 1.80 to 5.12) in all predator-prey relationships analyzed, indicating biomagnification of these compounds, whereas BMFs of other long-chain PFCAs varied according to the fish species. PFAS were found in all fish species measured from Lake Michigan and commonly biomagnified from prey to predator fish, strongly suggesting a dietary connection.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Salmonidae , Poluentes Químicos da Água , Animais , Lagos , Michigan , Ecossistema , Bioacumulação , Peixes , Fluorocarbonos/análise , Ácidos Sulfônicos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/análise
10.
Mol Ecol Resour ; 23(4): 756-770, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36633071

RESUMO

Environmental DNA (eDNA) analysis is a powerful tool for remote detection of target organisms. However, obtaining quantitative and longitudinal information from eDNA data is challenging, requiring a deep understanding of eDNA ecology. Notably, if the various size components of eDNA decay at different rates, and we can separate them within a sample, their changing proportions could be used to obtain longitudinal dynamics information on targets. To test this possibility, we conducted an aquatic mesocosm experiment in which we separated fish-derived eDNA components using sequential filtration to evaluate the decay rate and changing proportion of various eDNA particle sizes over time. We then fit four alternative mathematical decay models to the data, building towards a predictive framework to interpret eDNA data from various particle sizes. We found that medium-sized particles (1-10 µm) decayed more slowly than other size classes (i.e., <1 and > 10 µm), and thus made up an increasing proportion of eDNA particles over time. We also observed distinct eDNA particle size distribution (PSD) between our Common carp and Rainbow trout samples, suggesting that target-specific assays are required to determine starting eDNA PSDs. Additionally, we found evidence that different sizes of eDNA particles do not decay independently, with particle size conversion replenishing smaller particles over time. Nonetheless, a parsimonious mathematical model where particle sizes decay independently best explained the data. Given these results, we suggest a framework to discern target distance and abundance with eDNA data by applying sequential filtration, which theoretically has both metabarcoding and single-target applications.


Assuntos
Carpas , DNA Ambiental , Animais , DNA Ambiental/genética , DNA/genética , DNA/análise , Tamanho da Partícula , Ecologia , Monitoramento Ambiental/métodos
11.
Sci Total Environ ; 903: 166469, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633388

RESUMO

The use of environmental DNA (eDNA) as a sampling tool offers insights into the detection of invasive and/or rare aquatic species and enables biodiversity assessment without traditional sampling approaches, which are often labor-intensive. However, our understanding of the environmental factors that impact eDNA removal (i.e., how rapidly eDNA is removed from the water column by the combination of decay and physical removal) in flowing waters is limited. This limitation constrains predictions about the location and density of target organisms after positive detection. To address this question, we spiked Common Carp (Cyprinus carpio) eDNA into recirculating mesocosms (n = 24) under varying light (shaded versus open) and benthic substrate conditions (no substrate, bare substrate, and biofilm-colonized substrate). We then collected water samples from each mesocosm at four time points (40 min, 6 h, 18 h, and 48 h), and sequentially filtered the samples through 10, 1.0, and 0.2 µm filters to quantify removal rates for different eDNA particle sizes under varying light and substrate conditions. Combining all size classes, total eDNA removal rates were higher for mesocosms with biofilm-colonized substrate compared to those with no substrate or bare (i.e., no biofilm) substrate, which is consistent with previous findings linking biofilm colonization with increased eDNA removal and degradation. Additionally, when biofilm was present, light availability increased eDNA removal; eDNA levels fell below detection after 6-18 h for open mesocosms versus 18-48 h for shaded mesocosms. Among size classes, larger particles (>10 µm) were removed faster than small particles (1.0-0.2 µm). These results suggest that changes in the distribution of eDNA size classes over time (e.g., with downstream transport) and with differing environmental conditions could be used to predict the location of target organisms in flowing waters, which will advance the use of eDNA as a tool for species monitoring and management.

12.
Science ; 382(6677): 1348-1355, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38127744

RESUMO

In late December 1973, the United States enacted what some would come to call "the pitbull of environmental laws." In the 50 years since, the formidable regulatory teeth of the Endangered Species Act (ESA) have been credited with considerable successes, obliging agencies to draw upon the best available science to protect species and habitats. Yet human pressures continue to push the planet toward extinctions on a massive scale. With that prospect looming, and with scientific understanding ever changing, Science invited experts to discuss how the ESA has evolved and what its future might hold. -Brad Wible.

13.
Environ Sci Technol ; 46(15): 8035-43, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22770612

RESUMO

Pacific salmon (Oncorhynchus spp.) can transport bioaccumulated organic pollutants to stream ecosystems where they spawn and die. We quantified PCBs, DDE, and PBDEs in resident fishes from 13 Great Lakes tributaries to assess biotransport of pollutants associated with introduced Pacific salmon. Resident fishes sampled from salmon spawning reaches had higher mean pollutant concentrations than those from upstream reaches lacking salmon (93.5 and 4.1 µg x kg(-1) [PCB], 24.0 and 3.1 µg x kg(-1) [DDE], 8.5 and 1.0 µg x kg(-1) [PBDE], respectively), but differences varied substantially among lake basins. In Lake Michigan tributaries, PCB concentrations in resident fishes from salmon reaches were over four times higher than those from salmon reaches in Lake Huron and over 30 times higher than those from Lake Superior. Moreover, resident fish pollutant concentrations were better explained by pollutant inputs from salmon (µg x m(-2); R(2) = 0.76 [PCB], 0.64 [DDE], 0.64 [PBDE]) than by land development/agriculture, watershed area, resident fish species, body length, or lipid content. These results suggest that pollutant dispersal to stream ecosystems via biotransport is an often overlooked consequence of salmon stocking and historical food web contamination in the Great Lakes. Our findings have implications for Great Lakes management, including dam removal and wildlife conservation.


Assuntos
Salmão/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Diclorodifenil Dicloroetileno/metabolismo , Éteres Difenil Halogenados/metabolismo , Lagos , Bifenilos Policlorados/metabolismo , Reprodução , Salmão/fisiologia
15.
Integr Environ Assess Manag ; 18(6): 1500-1512, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35029321

RESUMO

A review of the published literature on the trophic magnification factor (TMF) for per- and polyfluoroalkyl substances (PFAS) was conducted to assess how biomagnification varies across aquatic systems worldwide. Although the TMF has been recognized as the most reliable tool for assessing the biomagnification of organic contaminants, peer-reviewed studies reporting TMFs for PFAS are few and with limited geographical distribution. We found 25 published studies of the biomagnification of 35 specific PFAS, for which the TMF was generated through linear regression of individual log-PFAS concentration and the δ15 N-based trophic position of each organism in the food webs. Studies were concentrated mainly in China, North America, and Europe, and the most investigated compound was perfluorooctane sulfonate (PFOS), which was frequently shown to be biomagnified in the food web (TMFs ranging from 0.8 to 20). Other long-chain carboxylates displayed substantial variation in trophic magnification. Observed differences in the TMF were associated with length of the food web, geographic location, sampling methodologies, tissue analyzed, and distance from known direct PFAS inputs. In addition to biomagnification of legacy PFAS, precursor substances were observed to bioaccumulate in the food web, which suggests they may biotransform to more persistent PFAS compounds in upper trophic levels. This review discusses the variability of environmental characteristics driving PFAS biomagnification in natural ecosystems and highlights the different approaches used by each study, which can make comparisons among studies challenging. Suggestions on how to standardize TMFs for PFAS are also provided in this review. Integr Environ Assess Manag 2022;18:1500-1512. © 2022 SETAC.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Cadeia Alimentar
16.
Oecologia ; 159(3): 583-95, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19132408

RESUMO

Pacific salmon (Oncorhynchus spp.) disturb sediments and fertilize streams with marine-derived nutrients during their annual spawning runs, leading researchers to classify these fish as ecosystem engineers and providers of resource subsidies. While these processes strongly influence the structure and function of salmon streams, the magnitude of salmon influence varies widely across studies. Here, we use meta-analysis to evaluate potential sources of variability among studies in stream ecosystem responses to salmon. Results obtained from 37 publications that collectively included 79 streams revealed positive, but highly inconsistent, overall effects of salmon on dissolved nutrients, sediment biofilm, macroinvertebrates, resident fish, and isotopic enrichment. Variation in these response variables was commonly influenced by salmon biomass, stream discharge, sediment size, and whether studies used artificial carcass treatments or observed a natural spawning run. Dissolved nutrients were positively related to salmon biomass per unit discharge, and the slope of the relationship for natural runs was five to ten times higher than for carcass additions. Mean effects on ammonium and phosphorus were also greater for natural runs than carcass additions, an effect attributable to excretion by live salmon. In contrast, we observed larger positive effects on benthic macroinvertebrates for carcass additions than for natural runs, likely because disturbance by live salmon was absent. Furthermore, benthic macroinvertebrates and biofilm associated with small sediments (<32 mm) displayed a negative response to salmon while those associated with large sediments (>32 mm) showed a positive response. This comprehensive analysis is the first to quantitatively identify environmental and methodological variables that influence the observed effects of salmon. Identifying sources of variation in salmon-stream interactions is a critical step toward understanding why engineering and subsidy effects vary so dramatically over space and time, and toward developing management strategies that will preserve the ecological integrity of salmon streams.


Assuntos
Ecossistema , Salmão/fisiologia , Animais , Água Doce , Sedimentos Geológicos , Água do Mar , Especificidade da Espécie
17.
Environ Toxicol Chem ; 28(2): 418-26, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18811225

RESUMO

Contaminants have direct, harmful effects across multiple ecological scales, including the individual, the community, and the ecosystem levels. Less, however, is known about how indirect effects of contaminants on consumer physiology or behavior might alter community interactions or ecosystem processes. We examined whether a potential aquatic contaminant, an ionic liquid, can indirectly alter benthic algal biomass and primary production through direct effects on herbivorous snails. Ionic liquids are nonvolatile organic salts being considered as an environmentally friendly potential replacement for volatile organic compounds in industry. In two greenhouse experiments, we factorially crossed four concentrations of 1-N-butyl-3-methylimidazolium bromide (bmimBr; experiment 1: 0 or 10 mg/L; experiment 2: 0, 1, or 100 mg/L) with the presence or absence of the snail Physa acuta in aquatic mesocosms. Experimental results were weighted by their respective control (no bmimBr or P. acuta) and combined for statistical analysis. When both bmimBr and snails were present, chlorophyll a abundance and algal biovolume were higher than would be expected if both factors acted additively. In addition, snail growth rates, relative to those of controls, declined by 41 to 101% at 10 and 100 mg/L of bmimBr. Taken together, these two results suggest that snails were less efficient grazers in the presence of bmimBr, resulting in release of algae from the grazer control. Snails stimulated periphyton primary production in the absence, but not in the presence, of bmimBr, suggesting that bmimBr also can indirectly alter ecosystem function. These findings suggest that sublethal contaminant levels can negatively impact communities and ecosystem processes via complex interactions, and they provide baseline information regarding the potential effects of an emergent industrial chemical on aquatic systems.


Assuntos
Eucariotos/efeitos dos fármacos , Imidazóis/toxicidade , Compostos Orgânicos Voláteis/toxicidade , Poluentes Químicos da Água/toxicidade
18.
Sci Total Environ ; 652: 633-642, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30380471

RESUMO

Ecosystem linkages created by migratory organisms such as Pacific salmon (Oncorhynchus spp.) facilitate the transfer of ecologically beneficial resource subsidies and environmentally damaging contaminants to recipient food webs. In the Laurentian Great Lakes, introduced Pacific salmon accumulate large contaminant burdens that they disperse to streams during spawning in the form of carcass and gametic tissue, with uncertain consequences for stream food webs. Here, we describe a coupled bioenergetics-bioaccumulation model parameterized using empirical and literature-sourced data to predict the dual effect of Pacific salmon on stream-resident brook trout (Salvelinus fontinalis) growth and contaminant bioaccumulation. Within the model, we developed four unique scenarios to ascertain how the (1) trophic pathway to contamination, (2) level of salmon egg consumption, (3) intensity and duration of salmon exposure, and (4) age of first exposure to salmon, affected growth and contaminant bioaccumulation in brook trout. Our model demonstrated that salmon egg consumption increased brook trout growth and PCB bioaccumulation while reducing Hg tissue concentrations. Other trophic pathways, including direct carcass consumption and an indirect food web pathway, did not strongly influence growth or contaminant bioaccumulation. Our model also demonstrated that variation in the magnitude and temporal duration of salmon egg consumption mostly strongly influenced the growth and contaminant concentration of younger brook trout. Overall, our model highlighted that Pacific salmon transfer energy and contaminants but this balance is dictated by the food web pathway and plasticity in the diet of stream-resident fish. Our mechanistic, model-based evaluation of salmon contaminant biotransport can be extended to predict the impact of other migratory fishes on recipient food webs.


Assuntos
Exposição Dietética , Peixes/fisiologia , Cadeia Alimentar , Poluentes Químicos da Água/metabolismo , Animais , Rios , Salmão/fisiologia , Poluentes Químicos da Água/análise
19.
Ecol Appl ; 18(1): 4-11, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18372551

RESUMO

Although species commonly modify habitats and thereby influence ecosystem structure and function, the factors governing the ecological importance of these modifications are not well understood. Pacific salmon have repeatedly been shown to positively influence the abundance of benthic biota by annually transferring large quantities of nutrients from marine systems to the nutrient-poor freshwaters in which they spawn. Conversely, other studies have demonstrated that salmon can negatively influence the abundance of freshwater biota, an effect attributed to bioturbation during upstream migration and nest construction. The factors determining which of these contrasting ecological effects predominates are unknown, including how human activities, such as land use, influence ecological responses to salmon. We sampled a key basal food resource, sediment biofilm, in seven southeast Alaskan streams impacted to varying degrees by timber harvest. Biofilm abundance (measured as chlorophyll a and ash-free dry mass) was positively related to timber-harvest intensity prior to salmon arrival. However, during the salmon run, an inverse relationship emerged of more abundant biofilm in less-harvested watersheds. Among-stream variability in biofilm response to salmon was largely explained by sediment particle size, which was larger in less-harvested watersheds. Collectively, these results suggest that, by altering stream sediment size, timber harvest transformed the dominant effect of salmon from nutrient enrichment to physical disturbance, thus modifying nutrient linkages between marine and freshwater ecosystems.


Assuntos
Ecologia , Agricultura Florestal , Salmão/fisiologia , Alaska , Animais , Biofilmes , Sedimentos Geológicos/química
20.
Sci Total Environ ; 404(2-3): 326-34, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18054999

RESUMO

Three categories of digital wetland maps widely available in the United States were used to develop models relating wetlands to DOC: (1) wetlands mapped by the U.S. National Wetlands Inventory (NWI) (2) wetland vegetation cover mapped by the U.S. National Land Cover Dataset (NLCD), and (3) maps of hydric soils. Data extracted from these maps for 27 headwater catchments of the Ontonagon River in northern Michigan, USA were used with DOC concentrations measured in catchment streams to develop stepwise multiple regressions based on wetland area and type. The catchments of the 27 tributaries ranged in area from 2 to 66 km(2) and wetlands constituted 10 to 53% of their area. Although all three databases provided regressions that were highly significant (p<0.001), the variance explained was greater for NWI maps (R(2)=0.75) than for NLCD (R(2)=0.61) or soil maps (R(2)=0.60). Wetland-stream relationships were strongest during September 2002, but were significant for nine out of ten dates sampled during subsequent seasons. The individual wetland type most highly correlated (r>0.62) with stream DOC concentrations was conifer peatland, represented on the NWI maps as Palustrine Needle-leaved Forest, the NLCD maps as woody wetland, and the soil maps as organic soils. For the NWI dataset, DOC was negatively correlated with area of palustrine emergent wetlands (i.e., sedge meadows and graminoid fens) and bog shrubs, inferring that these wetland types may be sinks for DOC. Because of the different effects of wetland vegetation types on DOC, a GIS data source such as the NWI which depicts those wetland types is superior for predicting landscape contributions to stream DOC concentrations.


Assuntos
Carbono/análise , Monitoramento Ambiental , Sistemas de Informação Geográfica , Compostos Orgânicos/análise , Rios/química , Poluentes Químicos da Água/análise , Áreas Alagadas , Carbono/química , Coleta de Dados , Michigan , Compostos Orgânicos/química , Análise de Regressão , Estações do Ano , Fatores de Tempo , Estados Unidos , Movimentos da Água , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA