Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513418

RESUMO

Resveratrol, a naturally occurring stilbene, exhibits numerous beneficial health effects. Various studies have demonstrated its diverse biological actions, including anti-oxidant, anti-inflammatory, and anti-platelet properties, thereby supporting its potential for cardio protection, neuroprotection, and anti-cancer activity. However, a significant limitation of resveratrol is its weak bioavailability. To overcome this challenge, multiple research groups have investigated the synthesis of new resveratrol derivatives to enhance bioavailability and pharmacological activities. Nevertheless, there are limited data on the effects of resveratrol derivatives on platelet function. Therefore, the objective of this study was to synthesize resveratrol methoxy derivatives and evaluate their anti-platelet and anti-proliferative activity. Platelet-rich plasma (PRP) obtained from healthy volunteers was utilized to assess the derivatives' ability to inhibit platelet aggregation induced by platelet activating factor (PAF), adenosine diphosphate (ADP), and thrombin receptor activating peptide (TRAP). Additionally, the derivatives' anti-tumor activity was evaluated against the proliferation of PC-3 and HCT116 cells. The results revealed that some methoxy derivatives of resveratrol exhibited comparable or even superior anti-platelet activity compared to the original compound. The most potent derivative was the 4'-methoxy derivative, which demonstrated approximately 2.5 orders of magnitude higher anti-platelet activity against TRAP-induced platelet aggregation, indicating its potential as an anti-platelet agent. Concerning in silico studies, the 4'-methyl group of 4'-methoxy derivative is oriented similarly to the fluorophenyl-pyridyl group of Vorapaxar, buried in a hydrophobic cavity. In terms of their anti-tumor activity, 3-MRESV exhibited the highest potency in PC-3 cells, while 3,4'-DMRESV and TMRESV showed the greatest efficacy in HCT116 cells. In conclusion, methoxy derivatives of resveratrol possess similar or improved anti-platelet and anti-cancer effects, thereby holding potential as bioactive compounds in various pathological conditions.


Assuntos
Plaquetas , Agregação Plaquetária , Humanos , Resveratrol/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Testes de Função Plaquetária
2.
Mol Pharm ; 19(7): 2231-2247, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467350

RESUMO

Prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) have both been used in nuclear medicine as targets for molecular imaging and therapy of prostate (PCa) and breast cancer (BCa). Three bioconjugate probes, the PSMA specific: [68Ga]Ga-1, ((HBED-CC)-Ahx-Lys-NH-CO-NH Glu or PSMA-11), the GRPR specific: [68Ga]Ga-2, ((HBED-CC)-4-amino-1-carboxymethyl piperidine-[D-Phe6, Sta13]BN(6-14), a bombesin (BN) analogue), and 3 (the BN analogue: 4-amino-1-carboxymethyl piperidine-[(R)-Phe6, Sta13]BN(6-14) connected with the fluorescent dye, BDP-FL), were synthesized and tested in vitro with PCa and BCa cell lines, more specifically, with PCa cells, PC-3 and LNCaP, with BCa cells, T47D, MDA-MB-231, and with the in-house created PSMA-overexpressing PC-3(PSMA), T47D(PSMA), and MDA-MB-231(PSMA). In addition, biomolecular simulations were conducted on the association of 1 and 2 with PSMA and GRPR. The PSMA overexpression resulted in an increase of cell-bound radioligand [68Ga]Ga-1 (PSMA) for PCa and BCa cells and also of [68Ga]Ga-2 (GRPR), especially in those cell lines already expressing GRPR. The results were confirmed by fluorescence-activated cell sorting with a PE-labeled PSMA-specific antibody and the fluorescence tracer 3. The docking calculations and molecular dynamics simulations showed how 1 enters the PSMA funnel region and how pharmacophore Glu-urea-Lys interacts with the arginine patch, the S1', and S1 subpockets by forming hydrogen and van der Waals bonds. The chelating moiety of 1, that is, HBED-CC, forms additional stabilizing hydrogen bonding and van der Waals interactions in the arene-binding site. Ligand 2 is diving into the GRPR transmembrane (TM) helical cavity, thereby forming hydrogen bonds through its amidated end, water-mediated hydrogen bonds, and π-π interactions. Our results provide valuable information regarding the molecular mechanisms involved in the interactions of 1 and 2 with PSMA and GRPR, which might be useful for the diagnostic imaging and therapy of PCa and BCa.


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Neoplasias da Próstata , Receptores da Bombesina , Antígenos de Superfície/metabolismo , Bombesina , Neoplasias da Mama , Feminino , Radioisótopos de Gálio , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ligantes , Masculino , Piperidinas , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/metabolismo , Receptores da Bombesina/metabolismo
3.
Bioorg Chem ; 106: 104482, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272706

RESUMO

Raloxifene agonism of estrogen receptor (ER) in post-menopausal endometrium is not negligible. Based on a rational drug design workflow, we synthesized 14 analogues of raloxifene bearing a polar group in the aromatic ring of the basic side chain (BSC) and/or changes in the bulkiness of the BSC amino group. Analogues with a polar BSC aromatic ring and amino group substituents of increasing volume displayed increasing ER antagonism in Ishikawa cells. Analogues with cyclohexylaminoethoxy (13a) or adamantylaminoethoxy BSC (13b) lacking a polar aromatic ring displayed high ER-binding affinity and ER antagonism in Ishikawa cells higher than raloxifene and similar to fulvestrant (ICI182,780). The endometrial surface epithelium of immature female CD1 mice injected with 13b was comparable to that of vehicle-treated mice, while that of mice treated with estradiol, raloxifene or 13b in combination with estradiol was hyperplastic. These findings indicate that raloxifene analogues with a bulky BSC amino group could provide for higher endometrial safety treatment of the menopausal syndrome.


Assuntos
Desenho de Fármacos , Endométrio/efeitos dos fármacos , Antagonistas de Estrogênios/farmacologia , Cloridrato de Raloxifeno/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Antagonistas de Estrogênios/síntese química , Antagonistas de Estrogênios/química , Feminino , Camundongos , Estrutura Molecular , Cloridrato de Raloxifeno/síntese química , Cloridrato de Raloxifeno/química , Receptores de Estrogênio/metabolismo , Relação Estrutura-Atividade
4.
Molecules ; 26(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34443516

RESUMO

Oxidative stress and inflammation are two conditions that coexist in many multifactorial diseases such as atherosclerosis and neurodegeneration. Thus, the design of multifunctional compounds that can concurrently tackle two or more therapeutic targets is an appealing approach. In this study, the basic NSAID structure was fused with the antioxidant moieties 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHB), its reduced alcohol 3,5-di-tert-butyl- 4-hydroxybenzyl alcohol (BHBA), or 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), a hydrophilic analogue of α-tocopherol. Machine learning algorithms were utilized to validate the potential dual effect (anti-inflammatory and antioxidant) of the designed analogues. Derivatives 1-17 were synthesized by known esterification methods, with good to excellent yields, and were pharmacologically evaluated both in vitro and in vivo for their antioxidant and anti-inflammatory activity, whereas selected compounds were also tested in an in vivo hyperlipidemia protocol. Furthermore, the activity/binding affinity of the new compounds for lipoxygenase-3 (LOX-3) was studied not only in vitro but also via molecular docking simulations. Experimental results demonstrated that the antioxidant and anti-inflammatory activities of the new fused molecules were increased compared to the parent molecules, while molecular docking simulations validated the improved activity and revealed the binding mode of the most potent inhibitors. The purpose of their design was justified by providing a potentially safer and more efficient therapeutic approach for multifactorial diseases.


Assuntos
Antioxidantes/química , Aterosclerose/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Inflamação/tratamento farmacológico , Inibidores de Lipoxigenase/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/química , Antioxidantes/síntese química , Antioxidantes/farmacologia , Aterosclerose/patologia , Cromanos/química , Cromanos/farmacologia , Desenho de Fármacos , Humanos , Hiperlipidemias/patologia , Hipolipemiantes/síntese química , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Inflamação/patologia , Lipoxigenase/química , Lipoxigenase/efeitos dos fármacos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/farmacologia , Simulação de Acoplamento Molecular , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Estresse Oxidativo/efeitos dos fármacos , Parabenos/química , Parabenos/farmacologia , Relação Estrutura-Atividade
5.
Molecules ; 26(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209863

RESUMO

The fungal strain was isolated from a soil sample collected in Giza province, Egypt, and was identified as Aspergillus ochraceopetaliformis based on phenotypic and genotypic data. The ethyl acetate extract of the fungal strain exhibited promising activity levels against several pathogenic test organisms and through a series of 1H NMR guided chromatographic separations, a new α-pyrone-C-lyxofuranoside (1) along with four known compounds (2-5) were isolated. The planar structure of the new metabolite was elucidated by detailed analysis of its 1D/2D NMR and HRMS/IR/UV spectroscopic data, while the relative configuration of the sugar moiety was determined by a combined study of NOESY and coupling constants data, with the aid of theoretical calculations. The structures of the known compounds-isolated for the first time from A. ochraceopetaliformis-were established by comparison of their spectroscopic data with those in the literature. All isolated fungal metabolites were evaluated for their antibacterial and antifungal activities against six Gram-positive and Gram-negative bacteria as well as against three human pathogenic fungi.


Assuntos
Antibacterianos , Aspergillus/metabolismo , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Microbiologia do Solo , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Aspergillus/isolamento & purificação
6.
Biochemistry ; 59(4): 627-634, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31894969

RESUMO

The V27A mutation confers adamantane resistance on the influenza A matrix 2 (M2) proton channel and is becoming more prevalent in circulating populations of influenza A virus. We have used X-ray crystallography to determine structures of a spiro-adamantyl amine inhibitor bound to M2(22-46) V27A and also to M2(21-61) V27A in the Inwardclosed conformation. The spiro-adamantyl amine binding site is nearly identical for the two crystal structures. Compared to the M2 "wild type" (WT) with valine at position 27, we observe that the channel pore is wider at its N-terminus as a result of the V27A mutation and that this removes V27 side chain hydrophobic interactions that are important for binding of amantadine and rimantadine. The spiro-adamantyl amine inhibitor blocks proton conductance in the WT and V27A mutant channels by shifting its binding site in the pore depending on which residue is present at position 27. Additionally, in the structure of the M2(21-61) V27A construct, the C-terminus of the channel is tightly packed relative to that of the M2(22-46) construct. We observe that residues Asp44, Arg45, and Phe48 face the center of the channel pore and would be well-positioned to interact with protons exiting the M2 channel after passing through the His37 gate. A 300 ns molecular dynamics simulation of the M2(22-46) V27A-spiro-adamantyl amine complex predicts with accuracy the position of the ligands and waters inside the pore in the X-ray crystal structure of the M2(22-46) V27A complex.


Assuntos
Adamantano/química , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/ultraestrutura , Adamantano/análogos & derivados , Adamantano/farmacologia , Aminas/metabolismo , Antivirais/farmacologia , Sítios de Ligação/genética , Cristalografia por Raios X/métodos , Farmacorresistência Bacteriana/genética , Farmacorresistência Viral/efeitos dos fármacos , Humanos , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Influenza Humana/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Mutação/genética , Radiografia/métodos , Proteínas da Matriz Viral/genética
7.
Bioorg Chem ; 95: 103495, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855822

RESUMO

Steroid sulfatase (STS) transforms hormone precursors into active steroids. Thus, it represents a target of intense research regarding hormone-dependent cancers. In this study, three ligand-based pharmacophore models were developed to identify STS inhibitors from natural sources. In a pharmacophore-based virtual screening of a curated molecular TCM database, lanostane-type triterpenes (LTTs) were predicted as STS ligands. Three traditionally used polypores rich in LTTs, i.e., Ganoderma lucidum Karst., Gloeophyllum odoratum Imazeki, and Fomitopsis pinicola Karst., were selected as starting materials. Based on eighteen thereof isolated LTTs a structure activity relationship for this compound class was established with piptolinic acid D (1), pinicolic acid B (2), and ganoderol A (3) being the most pronounced and first natural product STS inhibitors with IC50 values between 10 and 16 µM. Molecular docking studies proposed crucial ligand target interactions and a prediction tool for these natural compounds correlating with experimental findings.


Assuntos
Inibidores Enzimáticos/farmacologia , Lanosterol/farmacologia , Esteril-Sulfatase/antagonistas & inibidores , Triterpenos/farmacologia , Basidiomycota/química , Coriolaceae/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Lanosterol/análogos & derivados , Lanosterol/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Reishi/química , Esteril-Sulfatase/metabolismo , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/isolamento & purificação
8.
Molecules ; 25(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033190

RESUMO

Abstract: A main cellular functional module that becomes dysfunctional during aging is the proteostasis network. In the present study, we show that benzoic acid derivatives isolated from Bjerkandera adusta promote the activity of the two main protein degradation systems, namely the ubiquitin-proteasome (UPP) and especially the autophagy-lysosome pathway (ALP) in human foreskin fibroblasts. Our findings were further supported by in silico studies, where all compounds were found to be putative binders of both cathepsins B and L. Among them, compound 3 (3-chloro-4-methoxybenzoic acid) showed the most potent interaction with both enzymes, which justifies the strong activation of cathepsins B and L (467.3 ± 3.9%) on cell-based assays. Considering that the activity of both the UPP and ALP pathways decreases with aging, our results suggest that the hydroxybenzoic acid scaffold could be considered as a promising candidate for the development of novel modulators of the proteostasis network, and likely of anti-aging agents.


Assuntos
Autofagia/fisiologia , Coriolaceae/química , Hidroxibenzoatos/farmacologia , Lisossomos/fisiologia , Proteostase/efeitos dos fármacos , Ácido Benzoico/farmacologia , Catepsinas/metabolismo , Extratos Celulares/farmacologia , Linhagem Celular , Coriolaceae/metabolismo , Humanos , Hidroxibenzoatos/química , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
9.
Mol Microbiol ; 108(2): 204-219, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29437264

RESUMO

The uracil permease UraA of Escherichia coli is a structurally known prototype for the ubiquitous Nucleobase-Ascorbate Transporter (NAT) or Nucleobase-Cation Symporter-2 (NCS2) family and represents a well-defined subgroup of bacterial homologs that remain functionally unstudied. Here, we analyze four of these homologs, including RutG of E. coli which shares 35% identity with UraA and is encoded in the catabolic rut (pyrimidine utilization) operon. Using amplified expression in E. coli K-12, we show that RutG is a high-affinity permease for uracil, thymine and, at low efficiency, xanthine and recognizes also 5-fluorouracil and oxypurinol. In contrast, UraA and the homologs from Acinetobacter calcoaceticus and Aeromonas veronii are permeases specific for uracil and 5-fluorouracil. Molecular docking indicates that thymine is hindered from binding to UraA by a highly conserved Phe residue which is absent in RutG. Site-directed replacement of this Phe with Ala in the three uracil-specific homologs allows high-affinity recognition and/or transport of thymine, emulating the RutG profile. Furthermore, all RutG orthologs from enterobacteria retain an Ala at this position, implying that they can use both uracil and thymine and, possibly, xanthine as substrates and provide the bacterial cell with a range of catabolizable nucleobases.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Pirimidinas/metabolismo , Uracila/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Simulação de Acoplamento Molecular , Família Multigênica , Óperon , Filogenia , Pirimidinas/química , Especificidade por Substrato , Timina/química , Timina/metabolismo , Uracila/química
10.
Mol Microbiol ; 103(2): 319-332, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27741561

RESUMO

NCS1 proteins are H+ or Na+ symporters responsible for the uptake of purines, pyrimidines or related metabolites in bacteria, fungi and some plants. Fungal NCS1 are classified into two evolutionary and structurally distinct subfamilies, known as Fur- and Fcy-like transporters. These subfamilies have expanded and functionally diversified by gene duplications. The Fur subfamily of the model fungus Aspergillus nidulans includes both major and cryptic transporters specific for uracil, 5-fluorouracil, allantoin or/and uric acid. Here we functionally analyse all four A. nidulans Fcy transporters (FcyA, FcyC, FcyD and FcyE) with previously unknown function. Our analysis shows that FcyD is moderate-affinity, low-capacity, highly specific adenine transporter, whereas FcyE contributes to 8-azaguanine uptake. Mutational analysis of FcyD, supported by homology modelling and substrate docking, shows that two variably conserved residues (Leu356 and Ser359) in transmembrane segment 8 (TMS8) are critical for transport kinetics and specificity differences among Fcy transporters, while two conserved residues (Phe167 and Ser171) in TMS3 are also important for function. Importantly, mutation S359N converts FcyD to a promiscuous nucleobase transporter capable of recognizing adenine, xanthine and several nucleobase analogues. Our results reveal the importance of specific residues in the functional evolution of NCS1 transporters.


Assuntos
Aspergillus nidulans/genética , Proteínas de Transporte de Nucleobases/genética , Purinas/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/metabolismo , Evolução Biológica , Transporte Biológico , Sequência Conservada , Proteínas Fúngicas/metabolismo , Duplicação Gênica , Proteínas de Transporte de Nucleobases/química , Proteínas de Transporte de Nucleobases/metabolismo , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
J Chem Inf Model ; 58(4): 794-815, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29485875

RESUMO

An intense effort is made by pharmaceutical and academic research laboratories to identify and develop selective antagonists for each adenosine receptor (AR) subtype as potential clinical candidates for "soft" treatment of various diseases. Crystal structures of subtypes A2A and A1ARs offer exciting opportunities for structure-based drug design. In the first part of the present work, Maybridge HitFinder library of 14400 compounds was utilized to apply a combination of structure-based against the crystal structure of A2AAR and ligand-based methodologies. The docking poses were rescored by CHARMM energy minimization and calculation of the desolvation energy using Poisson-Boltzmann equation electrostatics. Out of the eight selected and tested compounds, five were found positive hits (63% success). Although the project was initially focused on targeting A2AAR, the identified antagonists exhibited low micromolar or micromolar affinity against A2A/A3, ARs, or A3AR, respectively. Based on these results, 19 compounds characterized by novel chemotypes were purchased and tested. Sixteen of them were identified as AR antagonists with affinity toward combinations of the AR family isoforms (A2A/A3, A1/A3, A1/A2A/A3, and A3). The second part of this work involves the performance of hundreds of molecular dynamics (MD) simulations of complexes between the ARs and a total of 27 ligands to resolve the binding interactions of the active compounds, which were not achieved by docking calculations alone. This computational work allowed the prediction of stable and unstable complexes which agree with the experimental results of potent and inactive compounds, respectively. Of particular interest is that the 2-amino-thiophene-3-carboxamides, 3-acylamino-5-aryl-thiophene-2-carboxamides, and carbonyloxycarboximidamide derivatives were found to be selective and possess a micromolar to low micromolar affinity for the A3 receptor.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Antagonistas de Receptores Purinérgicos P1/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptores Purinérgicos P1/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Antagonistas de Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/química , Relação Estrutura-Atividade , Termodinâmica
12.
Molecules ; 22(4)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333105

RESUMO

In therapeutic interventions associated with melanin hyperpigmentation, tyrosinase is regarded as a target enzyme as it catalyzes the rate-limiting steps in mammalian melanogenesis. Since many known agents have been proven to be toxic, there has been increasing impetus to identify alternative tyrosinase inhibitors, especially from natural sources. In this study, we investigated 900 extracts from Greek plants for potential tyrosinase inhibitive properties. Among the five most potent extracts, the methanol extract of Morus alba wood (MAM) demonstrated a significant reduction in intracellular tyrosinase and melanin content in B16F10 melanoma cells. Bioassay-guided isolation led to the acquisition of twelve compounds: oxyresveratrol (1), kuwanon C (2), mulberroside A (3), resorcinol (4), dihydrooxyresveratol (5), trans-dihydromorin (6), 2,4,3'-trihydroxydihydrostilbene (7), kuwanon H (8), 2,4-dihydroxybenzaldehyde (9), morusin (10), moracin M (11) and kuwanon G (12). Among these, 2,4,3'-trihydroxydihydrostilbene (7) is isolated for the first time from Morus alba and constitutes a novel potent tyrosinase inhibitor (IC50 0.8 ± 0.15). We report here for the first time dihydrooxyresveratrol (5) as a potent natural tyrosinase inhibitor (IC50 0.3 ± 0.05). Computational docking analysis indicated the binding modes of six tyrosinase inhibitors with the aminoacids of the active centre of tyrosinase. Finally, we found both MAM extract and compounds 1, 6 and 7 to significantly suppress in vivo melanogenesis during zebrafish embryogenesis.


Assuntos
Inibidores Enzimáticos/isolamento & purificação , Hiperpigmentação/enzimologia , Metanol/isolamento & purificação , Monofenol Mono-Oxigenase/antagonistas & inibidores , Morus/química , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Hiperpigmentação/tratamento farmacológico , Melaninas/biossíntese , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Metanol/química , Metanol/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
13.
Mol Microbiol ; 98(3): 502-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26192456

RESUMO

The xanthine permease XanQ of Escherichia coli is a paradigm for transporters of the evolutionarily broad family nucleobase-cation symporter-2 (NCS2) that transport key metabolites or anti-metabolite analogs. Most functionally known members are xanthine/uric acid transporters related to XanQ and belong to a distinct phylogenetic cluster of the family. Here, we present a comprehensive mutagenesis of XanQ based on the identification and Cys-scanning analysis of conserved sequence motifs in this cluster. Results are interpreted in relation to homology modeling on the structurally known template of UraA and previous data on critical binding-site residues in transmembrane segments (TMs) 3, 8 and 10. The current analysis, of motifs distant to the binding site, revealed a set of functionally important residues in TMs 2, 5, 12 and 13, including seven irreplaceable ones, of which six are Gly residues in the gate domain (159, 369, 370, 383, 409) and in TM2 (Gly-71), and one is polar (Gln-75). Gln-75 (TM2) is probably crucial in a network of hydrogen-bonding interactions in the middle of the core domain involving another essential residue, Asp-304 (TM9). Although the two residues are irreplaceable individually, combinatorial replacement of Gln-75 with Asn and of Asp-304 with Glu rescues significant transport activity.


Assuntos
Escherichia coli/enzimologia , Proteínas de Transporte de Nucleobases/genética , Proteínas de Transporte de Nucleobases/metabolismo , Xantina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico Ativo , Sequência Conservada , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/métodos , Mutação , Proteínas de Transporte de Nucleobases/química , Filogenia , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Ácido Úrico/metabolismo , Xantina/química
14.
Bioorg Med Chem ; 24(22): 5941-5952, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27720327

RESUMO

In the course of our study on fungal purine transporters, a number of new 3-deazapurine analogues have been rationally designed, based on the interaction of purine substrates with the Aspergillus nidulans FcyB carrier, and synthesized following an effective synthetic procedure. Certain derivatives have been found to specifically inhibit FcyB-mediated [3H]-adenine uptake. Molecular simulations have been performed, suggesting that all active compounds interact with FcyB through the formation of hydrogen bonds with Asn163, while the insertion of hydrophobic fragments at position 9 and N6 of 3-deazaadenine enhanced the inhibition.


Assuntos
Aspergillus nidulans/química , Desenho de Fármacos , Proteínas de Transporte de Nucleobases/antagonistas & inibidores , Purinas/farmacologia , Relação Dose-Resposta a Droga , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas de Transporte de Nucleobases/metabolismo , Purinas/síntese química , Purinas/química , Relação Estrutura-Atividade
15.
Mol Microbiol ; 93(1): 129-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24818808

RESUMO

The AzgA purine/H(+) symporter of Aspergillus nidulans is the founding member of a functionally and phylogenetically distinct transporter family present in fungi, bacteria and plants. Here a valid AzgA topological model is built based on the crystal structure of the Escherichia coli uracil transporter UraA, a member of the nucleobase-ascorbate transporter (NAT/NCS2) family. The model consists of 14 transmembrane, mostly α-helical, segments (TMSs) and cytoplasmic N- and C-tails. A distinct compact core of 8 TMSs, made of two intertwined inverted repeats (TMSs 1-4 and 8-11), is topologically distinct from a flexible domain (TMSs 5-7 and 12-14). A putative substrate binding cavity is visible between the core and the gate domains. Substrate docking, molecular dynamics and mutational analysis identified several residues critical for purine binding and/or transport in TMS3, TMS8 and TMS10. Among these, Asn131 (TMS3), Asp339 (TMS8) and Glu394 (TMS10) are proposed to directly interact with substrates, while Asp342 (TMS8) might be involved in subsequent substrate translocation, through H(+) binding and symport. Thus, AzgA and other NAT transporters use topologically similar TMSs and amino acid residues for substrate binding and transport, which in turn implies that AzgA-like proteins constitute a distant subgroup of the ubiquitous NAT family.


Assuntos
Aminoácidos/metabolismo , Aspergillus nidulans/fisiologia , Proteínas Fúngicas/química , Proteínas de Transporte de Nucleobases/química , Purinas/metabolismo , Aspergillus nidulans/química , Sítios de Ligação , Análise Mutacional de DNA , Proteínas Fúngicas/genética , Hidrogênio/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Transporte de Nucleobases/genética , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
16.
Planta Med ; 80(11): 861-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25116117

RESUMO

Erythrina poeppigiana is a medicinal plant which is widely used in Asia, Latin America, and Africa in traditional remedies for gynecological complications and maladies. In continuation of studies for the discovery of novel phytoestrogens, four erythroidine alkaloids, namely α-erythroidine, ß-erythroidine, and their oxo-derivatives 8-oxo-α-erythroidine and 8-oxo-ß-erythroidine, were isolated and structurally characterized from the methanolic extract of the stem bark of E. poeppigiana. Due to the high amounts of erythroidines in the extract and considering the widespread utilization of Erythrina preparations in traditional medicine, the exploration of their estrogenic properties was performed. The estrogenicity of the isolated erythroidines was assayed in various estrogen receptor-(ER)-dependent test systems, including receptor binding affinity, cell culture based ER-dependent reporter gene assays, and gene expression studies in cultured cells using reverse transcription polymerase chain reaction techniques. α-Erythroidine and ß-erythroidine showed binding affinity values for ERα of 0.015 ± 0.010% and 0.005 ± 0.010%, respectively, whereas only ß-erythroidine bound to ERß (0.006 ± 0.010%). In reporter gene assays, both erythroidines exhibited a significant dose-dependent estrogenic stimulation of ER-dependent reporter gene activity in osteosarcoma cells detectable already at 10 nM. Results were confirmed in the MVLN cells, a bioluminescent variant of MCF-7 breast cancer cells. Further, α-erythroidine and ß-erythroidine both induced the enhanced expression of the specific ERα-dependent genes trefoil factor-1 and serum/glucocorticoid regulated kinase 3 in MCF-7 cells, confirming estrogenicity. Additionally, using molecular docking simulations, a potential mode of binding on ERα, is proposed, supporting the experimental evidences. This is the first time that an estrogenic profile is reported for erythroidine alkaloids, potentially a new class of phytoestrogens.


Assuntos
Alcaloides/isolamento & purificação , Erythrina/química , Fitoestrógenos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Alcaloides/química , Alcaloides/farmacologia , Linhagem Celular , Di-Hidro-beta-Eritroidina/química , Di-Hidro-beta-Eritroidina/isolamento & purificação , Di-Hidro-beta-Eritroidina/farmacologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/efeitos dos fármacos , Genes Reporter , Humanos , Estrutura Molecular , Fitoestrógenos/química , Fitoestrógenos/farmacologia , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Caules de Planta/química , Plantas Medicinais , Proteínas Recombinantes
17.
Biochim Biophys Acta Biomembr ; 1866(2): 184258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995846

RESUMO

Experimental binding free energies of 27 adamantyl amines against the influenza M2(22-46) WT tetramer, in its closed form at pH 8, were measured by ITC in DPC micelles. The measured Kd's range is ~44 while the antiviral potencies (IC50) range is ~750 with a good correlation between binding free energies computed with Kd and IC50 values (r = 0.76). We explored with MD simulations (ff19sb, CHARMM36m) the binding profile of complexes with strong, moderate and weak binders embedded in DMPC, DPPC, POPC or a viral mimetic membrane and using different experimental starting structures of M2. To predict accurately differences in binding free energy in response to subtle changes in the structure of the ligands, we performed 18 alchemical perturbative single topology FEP/MD NPT simulations (OPLS2005) using the BAR estimator (Desmond software) and 20 dual topology calculations TI/MD NVT simulations (ff19sb) using the MBAR estimator (Amber software) for adamantyl amines in complex with M2(22-46) WT in DMPC, DPPC, POPC. We observed that both methods with all lipids show a very good correlation between the experimental and calculated relative binding free energies (r = 0.77-0.87, mue = 0.36-0.92 kcal mol-1) with the highest performance achieved with TI/MBAR and lowest performance with FEP/BAR in DMPC bilayers. When antiviral potencies are used instead of the Kd values for computing the experimental binding free energies we obtained also good performance with both FEP/BAR (r = 0.83, mue = 0.75 kcal mol-1) and TI/MBAR (r = 0.69, mue = 0.77 kcal mol-1).


Assuntos
Influenza Humana , Bicamadas Lipídicas , Humanos , Bicamadas Lipídicas/química , Influenza Humana/metabolismo , Simulação de Dinâmica Molecular , Aminas , Dimiristoilfosfatidilcolina/química , Antivirais/farmacologia
18.
J Mol Biol ; 435(19): 168226, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544358

RESUMO

Transporters mediate the uptake of solutes, metabolites and drugs across the cell membrane. The eukaryotic FurE nucleobase/H+ symporter of Aspergillus nidulans has been used as a model protein to address structure-function relationships in the APC transporter superfamily, members of which are characterized by the LeuT-fold and seem to operate by the so-called 'rocking-bundle' mechanism. In this study, we reveal the binding mode, translocation and release pathway of uracil/H+ by FurE using path collective variable, funnel metadynamics and rational mutational analysis. Our study reveals a stepwise, induced-fit, mechanism of ordered sequential transport of proton and uracil, which in turn suggests that FurE, functions as a multi-step gated pore, rather than employing 'rocking' of compact domains, as often proposed for APC transporters. Finally, our work supports that specific residues of the cytoplasmic N-tail are involved in substrate translocation, in line with their essentiality for FurE function.


Assuntos
Proteínas de Membrana Transportadoras , Uracila , Transporte Biológico , Membrana Celular/metabolismo , Transporte de Íons , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Prótons , Uracila/metabolismo
19.
J Med Chem ; 66(21): 14544-14563, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37857371

RESUMO

Enterovirus D68 (EV-D68) virus is a nonpolio enterovirus that typically causes respiratory illness and, in severe cases, can lead to paralysis and death in children. There is currently no vaccine or antiviral for EV-D68. We previously discovered the viral 2A protease (2Apro) as a viable antiviral drug target and identified telaprevir as a 2Apro inhibitor. 2Apro is a viral cysteine protease that cleaves the viral VP1-2A polyprotein junction. In this study, we report the X-ray crystal structures of EV-D68 2Apro, wild-type, and the C107A mutant and the structure-based lead optimization of telaprevir. Guided by the X-ray crystal structure, we predicted the binding pose of telaprevir in 2Apro using molecular dynamics simulations. We then utilized this model to inform structure-based optimization of the telaprevir's reactive warhead and P1-P4 substitutions. These efforts led to the discovery of 2Apro inhibitors with improved antiviral activity than telaprevir. These compounds represent promising lead compounds for further development as EV-D68 antivirals.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Criança , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Antivirais/farmacologia , Antivirais/química
20.
J Med Chem ; 66(22): 15115-15140, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37943012

RESUMO

F1FO-ATP synthase is the mitochondrial complex responsible for ATP production. During myocardial ischemia, it reverses its activity, hydrolyzing ATP and leading to energetic deficit and cardiac injury. We aimed to discover novel inhibitors of ATP hydrolysis, accessing the druggability of the target within ischemia(I)/reperfusion(R) injury. New molecular scaffolds were revealed using ligand-based virtual screening methods. Fifty-five compounds were tested on isolated murine heart mitochondria and H9c2 cells for their inhibitory activity. A pyrazolo[3,4-c]pyridine hit structure was identified and optimized in a hit-to-lead process synthesizing nine novel derivatives. Three derivatives significantly inhibited ATP hydrolysis in vitro, while in vivo, they reduced myocardial infarct size (IS). The novel compound 31 was the most effective in reducing IS, validating that inhibition of F1FO-ATP hydrolytic activity can serve as a target for cardioprotection during ischemia. Further examination of signaling pathways revealed that the cardioprotection mechanism is related to the increased ATP content in the ischemic myocardium and increased phosphorylation of PKA and phospholamban, leading to the reduction of apoptosis.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Mitocôndrias Cardíacas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA