Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
MethodsX ; 6: 1379-1383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31431895

RESUMO

[This corrects the article DOI: 10.1016/j.mex.2018.07.006.][This corrects the article DOI: 10.1016/j.scitotenv.2017.09.145.].

2.
MethodsX ; 5: 803-807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105213

RESUMO

Satellite data has been used to ascertain trends and correlations between climate change and vegetation greenness in Asia. Our study utilized 33-year (1982-2014) AVHRR-GIMMS (Advanced Very High Resolution Radiometer-Global Inventory Modelling and Mapping Studies) NDVI3g and CRU TS (Climatic Research Unit Time Series) climate variable (temperature, rainfall, and potential evapotranspiration) time series. First, we estimated the overall trends for vegetation greenness and climate variables and analyzed trends during summer (April-October), winter (November-March), and the entire year. Second, we carried out correlation and regression analyses to detect correlations between vegetation greenness and climate variables. Our study revealed an increasing trend (0.05-0.28) in temperature in northeastern India (bordering Bhutan), Southeast Bhutan, Yunnan Province of China, Northern Myanmar, Central Cambodia, northern Laos, southern Vietnam, eastern Iran, southern Afghanistan, and southern Pakistan. However, a decreasing trend in temperature (0.00 to -0.04) was noted for specific areas in southern Asia including Central Myanmar and northwestern Thailand and the Guangxi, Southern Gansu, and Shandong provinces of China. The results also indicated an increasing trend for evapotranspiration and air temperature accompanied by a decreasing trend for vegetation greenness and rainfall. Increases in both the mean annual signal and annual cycle occurred in the forest, herbaceous, and cropland areas of India, Northwest China, and eastern Kazakhstan. The temperature was found to be the main driver of the changing vegetation greenness in Kazakhstan, northern Mongolia, Northeast and Central China, North Korea, South Korea, and northern Japan, showing an indirect relationship (R = 0.84-0.96). •Temperature is the main climatic variable affecting vegetation greenness.•A downward trend in vegetation greenness was observed during summer (April-October).•Temperature showed an upward trend across many areas of Asia during the study period.•In winter, rainfall showed downward and upward trends in different parts of Asia.

3.
Sci Total Environ ; 618: 1089-1095, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29100696

RESUMO

Satellite data has been used to ascertain trends and correlations between climate change and vegetation greenness in Asia. Our study utilized 33-year (1982-2014) AVHRR-GIMMS (Advanced Very High Resolution Radiometer - Global Inventory Modelling and Mapping Studies) NDVI3g and CRU TS (Climatic Research Unit Time Series) climate variable (temperature, rainfall, and potential evapotranspiration) time series. First, we estimated the overall trends for vegetation greenness, climate variables and analyzed trends during summer (April to October), winter (November to March), and the entire year. Second, we carried out correlation and regression analyses to detect correlations between vegetation greenness and climate variables. Our study revealed an increasing trend (0.05 to 0.28) in temperature in northeastern India (bordering Bhutan), Southeast Bhutan, Yunnan Province of China, Northern Myanmar, Central Cambodia, northern Laos, southern Vietnam, eastern Iran, southern Afghanistan, and southern Pakistan. However, a decreasing trend in temperature (0.00 to -0.04) was noted for specific areas in southern Asia including Central Myanmar and northwestern Thailand and the Guangxi, Southern Gansu, and Shandong provinces of China. The results also indicated an increasing trend for evapotranspiration and air temperature accompanied by a decreasing trend for vegetation greenness and rainfall. The temperature was found to be the main driver of the changing vegetation greenness in Kazakhstan, northern Mongolia, Northeast and Central China, North Korea, South Korea, and northern Japan, showing an indirect relationship (R=0.84-0.96).


Assuntos
Clima , Monitoramento Ambiental , Plantas , Estações do Ano , Afeganistão , Camboja , China , Mudança Climática , Índia , Irã (Geográfico) , Japão , Laos , Mianmar , Paquistão , Transpiração Vegetal , Chuva , República da Coreia , Imagens de Satélites , Temperatura , Tailândia , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA