Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Bioessays ; 45(4): e2200246, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36811380

RESUMO

Which sounds composed the first spoken languages? Archetypal sounds are not phylogenetically or archeologically recoverable, but comparative linguistics and primatology provide an alternative approach. Labial articulations are the most common speech sound, being virtually universal across the world's languages. Of all labials, the plosive 'p' sound, as in 'Pablo Picasso', transcribed /p/, is the most predominant voiceless sound globally and one of the first sounds to emerge in human infant canonical babbling. Global omnipresence and ontogenetic precocity imply that /p/-like sounds could predate the first major linguistic diversification event(s) in humans. Indeed, great ape vocal data support this view, namely, the only cultural sound shared across all great ape genera is articulatorily homologous to a rolling or trilled /p/, the 'raspberry'. /p/-like labial sounds represent an 'articulatory attractor' among living hominids and are likely among the oldest phonological features to have ever emerged in linguistic systems.


Assuntos
Hominidae , Fala , Animais , Humanos , Idioma , Fonética
2.
Bioessays ; 42(3): e1900102, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31994246

RESUMO

Language does not fossilize but this does not mean that the language's evolutionary timeline is lost forever. Great apes provide a window back in time on our last prelinguistic ancestor's communication and cognition. Phylogeny and cladistics implicitly conjure Pan (chimpanzees, bonobos) as a superior (often the only) model for language evolution compared with earlier diverging lineages, Gorilla and Pongo (orangutans). Here, in reviewing the literature, it is shown that Pan do not surpass other great apes along genetic, cognitive, ecologic, or vocal traits that are putatively paramount for language onset and evolution. Instead, revived herein is the idea that only by abandoning single-species models and learning about the variation among great apes, there might be a chance to retrieve lost fragments of the evolutionary timeline of language.


Assuntos
Gorilla gorilla/psicologia , Idioma , Pan paniscus/psicologia , Pan troglodytes/psicologia , Pongo pygmaeus/psicologia , Animais , Evolução Biológica , Cognição , Gorilla gorilla/genética , Humanos , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo pygmaeus/genética , Vocalização Animal
3.
Biol Lett ; 17(9): 20210302, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582737

RESUMO

The origin of language is one of the most significant evolutionary milestones of life on Earth, but one of the most persevering scientific unknowns. Two decades ago, game theorists and mathematicians predicted that the first words and grammar emerged as a response to transmission errors and information loss in language's precursor system, however, empirical proof is lacking. Here, we assessed information loss in proto-consonants and proto-vowels in human pre-linguistic ancestors as proxied by orangutan consonant-like and vowel-like calls that compose syllable-like combinations. We played back and re-recorded calls at increasing distances across a structurally complex habitat (i.e. adverse to sound transmission). Consonant-like and vowel-like calls degraded acoustically over distance, but no information loss was detected regarding three distinct classes of information (viz. individual ID, context and population ID). Our results refute prevailing mathematical predictions and herald a turning point in language evolution theory and heuristics. Namely, explaining how the vocal-verbal continuum was crossed in the hominid family will benefit from future mathematical and computational models that, in order to enjoy empirical validity and superior explanatory power, will be informed by great ape behaviour and repertoire.


Assuntos
Fonética , Voz , Animais , Humanos , Modelos Teóricos , Pongo
4.
Biol Lett ; 16(5): 20200232, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453963

RESUMO

Speech is a human hallmark, but its evolutionary origins continue to defy scientific explanation. Recently, the open-close mouth rhythm of 2-7 Hz (cycles/second) characteristic of all spoken languages has been identified in the orofacial signals of several nonhuman primate genera, including orangutans, but evidence from any of the African apes remained missing. Evolutionary continuity for the emergence of speech is, thus, still inconclusive. To address this empirical gap, we investigated the rhythm of chimpanzee lip-smacks across four populations (two captive and two wild). We found that lip-smacks exhibit a speech-like rhythm at approximately 4 Hz, closing a gap in the evidence for the evolution of speech-rhythm within the primate order. We observed sizeable rhythmic variation within and between chimpanzee populations, with differences of over 2 Hz at each level. This variation did not result, however, in systematic group differences within our sample. To further explore the phylogenetic and evolutionary perspective on this variability, inter-individual and inter-population analyses will be necessary across primate species producing mouth signals at speech-like rhythm. Our findings support the hypothesis that speech recruited ancient primate rhythmic signals and suggest that multi-site studies may still reveal new windows of understanding about these signals' use and production along the evolutionary timeline of speech.


Assuntos
Pan troglodytes , Fala , Animais , Evolução Biológica , Humanos , Lábio , Filogenia , Primatas , Vocalização Animal
5.
Proc Biol Sci ; 283(1829)2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122553

RESUMO

In many primates, including humans, the vocalizations of males and females differ dramatically, with male vocalizations and vocal anatomy often seeming to exaggerate apparent body size. These traits may be favoured by sexual selection because low-frequency male vocalizations intimidate rivals and/or attract females, but this hypothesis has not been systematically tested across primates, nor is it clear why competitors and potential mates should attend to vocalization frequencies. Here we show across anthropoids that sexual dimorphism in fundamental frequency (F0) increased during evolutionary transitions towards polygyny, and decreased during transitions towards monogamy. Surprisingly, humans exhibit greater F0 sexual dimorphism than any other ape. We also show that low-F0 vocalizations predict perceptions of men's dominance and attractiveness, and predict hormone profiles (low cortisol and high testosterone) related to immune function. These results suggest that low male F0 signals condition to competitors and mates, and evolved in male anthropoids in response to the intensity of mating competition.


Assuntos
Haplorrinos/fisiologia , Preferência de Acasalamento Animal/fisiologia , Comportamento Sexual Animal/fisiologia , Comportamento Sexual/fisiologia , Vocalização Animal/fisiologia , Adolescente , Animais , Evolução Biológica , Tamanho Corporal/fisiologia , Feminino , Haplorrinos/anatomia & histologia , Haplorrinos/classificação , Humanos , Hidrocortisona/fisiologia , Masculino , Modelos Biológicos , Filogenia , Caracteres Sexuais , Testosterona/fisiologia , Adulto Jovem
6.
J Exp Biol ; 218(Pt 6): 907-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25788727

RESUMO

Orangutans produce alarm calls called kiss-squeaks, which they sometimes modify by putting a hand in front of their mouth. Through theoretical models and observational evidence, we show that using the hand when making a kiss-squeak alters the acoustics of the production in such a way that more formants per kilohertz are produced. Our theoretical models suggest that cylindrical wave propagation is created with the use of the hand and face as they act as a cylindrical extension of the lips. The use of cylindrical wave propagation in animal calls appears to be extremely rare, but is an effective way to lengthen the acoustic system; it causes the number of resonances per kilohertz to increase. This increase is associated with larger animals, and thus using the hand in kiss-squeak production may be effective in exaggerating the size of the producer. Using the hand appears to be a culturally learned behavior, and therefore orangutans may be able to associate the acoustic effect of using the hand with potentially more effective deterrence of predators.


Assuntos
Pongo pygmaeus/fisiologia , Vocalização Animal , Acústica , Animais , Mãos , Indonésia , Modelos Biológicos , Espectrografia do Som
7.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25143037

RESUMO

Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the 'renewal process' (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins.


Assuntos
Mamíferos/fisiologia , Modelos Estatísticos , Passeriformes/fisiologia , Vocalização Animal/fisiologia , Animais , Evolução Biológica , Cadeias de Markov , Espectrografia do Som , Especificidade da Espécie
8.
Behav Brain Sci ; 37(6): 559-60; discussion 577-604, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25514949

RESUMO

Ackermann et al. provide an informative neurological road-map to primate call communication. However, the proposed model for speech evolution inadequately integrates comparative primate evidence. Critically, great ape voiceless calls are explicitly rendered unimportant, leaving the proposed model deprived of behavioral feedstock and proximate selective drivers capable of triggering the neurological transformations described by the authors in the primate brain.


Assuntos
Comunicação Animal , Evolução Biológica , Comunicação , Primatas/fisiologia , Fala/fisiologia , Animais , Humanos
9.
Elife ; 122024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252123

RESUMO

Recursive procedures that allow placing a vocal signal inside another of a similar kind provide a neuro-computational blueprint for syntax and phonology in spoken language and human song. There are, however, no known vocal sequences among nonhuman primates arranged in self-embedded patterns that evince vocal recursion or potential incipient or evolutionary transitional forms thereof, suggesting a neuro-cognitive transformation exclusive to humans. Here, we uncover that wild flanged male orangutan long calls feature rhythmically isochronous call sequences nested within isochronous call sequences, consistent with two hierarchical strata. Remarkably, three temporally and acoustically distinct call rhythms in the lower stratum were not related to the overarching rhythm at the higher stratum by any low multiples, which suggests that these recursive structures were neither the result of parallel non-hierarchical procedures nor anatomical artifacts of bodily constraints or resonances. Findings represent a case of temporally recursive hominid vocal combinatorics in the absence of syntax, semantics, phonology, or music. Second-order combinatorics, 'sequences within sequences', involving hierarchically organized and cyclically structured vocal sounds in ancient hominids may have preluded the evolution of recursion in modern language-able humans.


Language is the most powerful communication tool known in nature. By combining a finite set of elements, it allows us to encode infinite messages. This enables communication about virtually anything, from alerting others to potential dangers, to recommending a favourite book. The prevailing theory of the last 70 years suggests that this ability rests on a computational process in the brain that is unique to humans, known as recursion. Recursion enables humans to produce and place a language element or pattern of elements inside another element or pattern of the same kind. In this way, a clause can be embedded inside another 'carrier' clause to extend a thought, argument, or scenario, for example, "the dog, which chased the cat, was barking". While recursion offers a simple, yet potent, explanation for the endless possibilities of language, how and why recursion ­ and by extension language ­ emerged in humans but no other animals remains a mystery. Lameira et al. observed vocal patterns in wild orangutans that appeared to be composed of different elements. As orangutans and other great apes are our closest living relatives, they represent the most realistic model for studying the ability of human ancestors to use and comprehend language. Therefore, Lameira et al. set out to determine if this was a case of vocal patterning embedded within a similar vocal pattern, which could indicate that recursion underpins production of these calls. Analysing recordings of long calls made by wild male orangutans showed that they are organized as two layers, where calls with a regular beat (or tempo) are produced within another "carrier" call of a different tempo. Up to three different call types, each with their own signature tempo, can occur within the same carrier call. Further analysis confirmed these call types were unrelated to the carrier. The findings of Lameira et al. demonstrate that orangutans produce recursive vocal sequences that could represent a possible precursor to recursion in humans, offering a potential avenue for studying how recursion, and ultimately language, evolved in humans. In the future, better understanding of how language evolved may help to refine machine learning algorithms that aim to recognize, predict or generate text.


Assuntos
Música , Pongo , Humanos , Animais , Masculino , Cognição , Dinitrato de Isossorbida , Linguística
10.
J Acoust Soc Am ; 134(3): 2326-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23967963

RESUMO

One of the most apparent discontinuities between non-human primate (primate) call communication and human speech concerns repertoire size. The former is essentially fixed to a limited number of innate calls, while the latter essentially consists of numerous learned components. Consequently, primates are thought to lack laryngeal control required to produce learned voiced calls. However, whether they may produce learned voiceless calls awaits investigation. Here, a case of voiceless call learning in primates is investigated--orangutan (Pongo spp.) whistling. In this study, all known whistling orangutans are inventoried, whistling-matching tests (previously conducted with one individual) are replicated with another individual using original test paradigms, and articulatory and acoustic whistle characteristics are compared between three orangutans. Results show that whistling has been reported for ten captive orangutans. The test orangutan correctly matched human whistles with significantly high levels of performance. Whistle variation between individuals indicated voluntary control over the upper lip, lower lip, and respiratory musculature, allowing individuals to produce learned voiceless calls. Results are consistent with inter- and intra-specific social transmission in whistling orangutans. Voiceless call learning in orangutans implies that some important components of human speech learning and control were in place before the homininae-ponginae evolutionary split.


Assuntos
Comportamento Imitativo , Aprendizagem , Pongo/fisiologia , Canto , Vocalização Animal , Acústica , Animais , Evolução Biológica , Fenômenos Biomecânicos , Feminino , Humanos , Lábio/anatomia & histologia , Lábio/fisiologia , Masculino , Pongo/anatomia & histologia , Pongo/psicologia , Músculos Respiratórios/anatomia & histologia , Músculos Respiratórios/fisiologia , Espectrografia do Som , Especificidade da Espécie
11.
Trends Cogn Sci ; 27(2): 122-124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549965

RESUMO

The world's spoken languages are universally composed of vowels and consonants, but the primate prototypical call repertoire is almost exclusively composed of vowel-like calls. What was the origin of consonant-like calls? Their prevalence across great apes suggests that an arboreal lifestyle and extractive foraging were ecological preconditions for speech evolution.


Assuntos
Percepção da Fala , Fala , Animais , Fonética
12.
PNAS Nexus ; 2(6): pgad182, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383019

RESUMO

Speech is among the most complex motoric tasks humans ever perform. Songbirds match this achievement during song production through the precise and simultaneous motor control of two sound sources in the syrinx. Integrated and intricate motor control has made songbirds comparative models par excellence for the evolution of speech, however, phylogenetic distance with humans prevents an improved understanding of the precursors that, within the human lineage, drove the emergence of advanced vocal motor control and speech. Here, we report two types of biphonic call combination in wild orangutans that articulatorily resemble human beatboxing and that result from the simultaneous exercise of two vocal sound sources: one unvoiced source achieved through articulatory maneuvering of the lips, tongue, and jaw as typically used for consonant-like call production, plus one voiced source achieved through laryngeal action and voice activation as typically used for vowel-like call production. Orangutan biphonic call combinations showcase unappreciated levels of, and distinct neuromotor channels for, vocal motor control in a wild great ape, providing a direct vocal motor analogy with birdsong based on the precise and simultaneous co-control of two sound sources. Findings suggest that speech and human vocal fluency likely built upon complex call combination, coordination and coarticulation capacities that involved vowel-like and consonant-like calls in an ancestral hominid.

13.
Primates ; 64(3): 319-323, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36914916

RESUMO

Among animals, humans stand out in their consummate propensity to self-induce altered states of mind. Archaeology, history and ethnography show these activities have taken place since the beginnings of civilization, yet their role in the emergence and evolution of the human mind itself remains debatable. The means through which modern humans actively alter their experience of self and reality frequently depend on psychoactive substances, but it is uncertain whether psychedelics or other drugs were part of the ecology or culture of pre-human ancestors. Moreover, (nonhuman) great apes in captivity are currently being retired from medical research, rendering comparative approaches thus far impracticable. Here, we circumvent this limitation by harnessing the breadth of publicly available YouTube data to show that apes engage in rope spinning during solitary play. When spinning, the apes achieved speeds sufficient to alter self-perception and situational awareness that were comparable to those tapped for transcendent experiences in humans (e.g. Sufi whirling), and the number of revolutions spun predicted behavioural evidence for dizziness. Thus, spinning serves as a self-sufficient means of changing body-mind responsiveness in hominids. A proclivity for such experiences is shared between humans and great apes, and provides an entry point for the comparative study of the mechanisms, functions, and adaptive value of altered states of mind in human evolution.


Assuntos
Hominidae , Atividade Motora , Animais , Humanos , Tontura
14.
Sci Rep ; 13(1): 21138, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129443

RESUMO

Africa's paleo-climate change represents an "ecological black-box" along the evolutionary timeline of spoken language; a vocal hominid went in and, millions of years later, out came a verbal human. It is unknown whether or how a shift from forested, dense habitats towards drier, open ones affected hominid vocal communication, potentially setting stage for speech evolution. To recreate how arboreal proto-vowels and proto-consonants would have interacted with a new ecology at ground level, we assessed how a series of orangutan voiceless consonant-like and voiced vowel-like calls travelled across the savannah. Vowel-like calls performed poorly in comparison to their counterparts. Only consonant-like calls afforded effective perceptibility beyond 100 m distance without requiring repetition, as is characteristic of loud calling behaviour in nonhuman primates, typically composed by vowel-like calls. Results show that proto-consonants in human ancestors may have enhanced reliability of distance vocal communication across a canopy-to-ground ecotone. The ecological settings and soundscapes experienced by human ancestors may have had a more profound impact on the emergence and shape of spoken language than previously recognized.


Assuntos
Hominidae , Voz , Animais , Humanos , Fonética , Reprodutibilidade dos Testes , Fala , Pongo pygmaeus
15.
Nat Commun ; 14(1): 4069, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429846

RESUMO

Vocalizations differ substantially between the sexes in many primates, and low-frequency male vocalizations may be favored by sexual selection because they intimidate rivals and/or attract mates. Sexual dimorphism in fundamental frequency may be more pronounced in species with more intense male mating competition and in those with large group size, where social knowledge is limited and efficient judgment of potential mates and competitors is crucial. These non-mutually exclusive explanations have not been tested simultaneously across primate species. In a sample of vocalizations (n = 1914 recordings) across 37 anthropoid species, we investigated whether fundamental frequency dimorphism evolved in association with increased intensity of mating competition (H1), large group size (H2), multilevel social organization (H3), a trade-off against the intensity of sperm competition (H4), and/or poor acoustic habitats (H5), controlling for phylogeny and body size dimorphism. We show that fundamental frequency dimorphism increased in evolutionary transitions towards larger group size and polygyny. Findings suggest that low-frequency male vocalizations in primates may have been driven by selection to win mating opportunities by avoiding costly fights and may be more important in larger groups, where limited social knowledge affords advantages to rapid assessment of status and threat potential via conspicuous secondary sexual characteristics.


Assuntos
Sêmen , Caracteres Sexuais , Masculino , Feminino , Animais , Reprodução , Primatas , Haplorrinos
16.
Nat Ecol Evol ; 6(5): 644-652, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314786

RESUMO

In humans, individuals' social setting determines which and how language is acquired. Social seclusion experiments show that sociality also guides vocal development in songbirds and marmoset monkeys, but absence of similar great ape data has been interpreted as support to saltational notions for language origin, even if such laboratorial protocols are unethical with great apes. Here we characterize the repertoire entropy of orangutan individuals and show that in the wild, different degrees of sociality across populations are associated with different 'vocal personalities' in the form of distinct regimes of alarm call variants. In high-density populations, individuals are vocally more original and acoustically unpredictable but new call variants are short lived, whereas individuals in low-density populations are more conformative and acoustically consistent but also exhibit more complex call repertoires. Findings provide non-invasive evidence that sociality predicts vocal phenotype in a wild great ape. They prove false hypotheses that discredit great apes as having hardwired vocal development programmes and non-plastic vocal behaviour. Social settings mould vocal output in hominids besides humans.


Assuntos
Hominidae , Vocalização Animal , Animais , Fenótipo , Pongo , Comportamento Social
17.
Proc Biol Sci ; 276(1673): 3689-94, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19656794

RESUMO

Culture has long been assumed to be uniquely human but recent studies, in particular on great apes, have suggested that cultures also occur in non-human primates. The most apparent cultural behaviours in great apes involve tools in the subsistence context where they are clearly functional to obtain valued food. On the other hand, tool-use to modify acoustic communication has been reported only once and its function has not been investigated. Thus, the question whether this is an adaptive behaviour remains open, even though evidence indicates that it is socially transmitted (i.e. cultural). Here we report on wild orang-utans using tools to modulate the maximum frequency of one of their sounds, the kiss squeak, emitted in distress. In this variant, orang-utans strip leaves off a twig and hold them to their mouth while producing a kiss squeak. Using leaves as a tool lowers the frequency of the call compared to a kiss squeak without leaves or with only a hand to the mouth. If the lowering of the maximum frequency functions in orang-utans as it does in other animals, two predictions follow: (i) kiss squeak frequency is related to body size and (ii) the use of leaves will occur in situations of most acute danger. Supporting these predictions, kiss squeaks without tools decreased with body size and kiss squeaks with leaves were only emitted by highly distressed individuals. Moreover, we found indications that the calls were under volitional control. This finding is significant for at least two reasons. First, although few animal species are known to deceptively lower the maximum frequency of their calls to exaggerate their perceived size to the listener (e.g. vocal tract elongation in male deer) it has never been reported that animals may use tools to achieve this, or that they are primates. Second, it shows that the orang-utan culture extends into the communicative domain, thus challenging the traditional assumption that primate calling behaviour is overall purely emotional.


Assuntos
Pongo pygmaeus/fisiologia , Comportamento de Utilização de Ferramentas/fisiologia , Vocalização Animal/fisiologia , Animais
18.
Primates ; 50(1): 56-64, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19052691

RESUMO

The capacity of nonhuman primates to actively modify the acoustic structure of existing sounds or vocalizations in their repertoire appears limited. Several studies have reported population or community differences in the acoustical structure of nonhuman primate long distance calls and have suggested vocal learning as a mechanism for explaining such variation. In addition, recent studies on great apes have indicated that there are repertoire differences between populations. Some populations have sounds in their repertoire that others have not. These differences have also been suggested to be the result of vocal learning. On yet another level great apes can, after extensive human training, also learn some species atypical vocalizations. Here we show a new aspect of great ape vocal learning by providing data that an orangutan has spontaneously (without any training) acquired a human whistle and can modulate the duration and number of whistles to copy a human model. This might indicate that the learning capacities of great apes in the auditory domain might be more flexible than hitherto assumed.


Assuntos
Animais de Zoológico , Comportamento Imitativo/fisiologia , Aprendizagem/fisiologia , Pongo pygmaeus/fisiologia , Vocalização Animal , Animais , Análise Discriminante , Feminino , Humanos , Espectrografia do Som
19.
Sci Rep ; 9(1): 12289, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444387

RESUMO

Active voicing - voluntary control over vocal fold oscillation - is essential for speech. Nonhuman great apes can learn new consonant- and vowel-like calls, but active voicing by our closest relatives has historically been the hardest evidence to concede to. To resolve this controversy, a diagnostic test for active voicing is reached here through the use of a membranophone: a musical instrument where a player's voice flares a membrane's vibration through oscillating air pressure. We gave the opportunity to use a membranophone to six orangutans (with no effective training), three of whom produced a priori novel (species-atypical) individual-specific vocalizations. After 11 and 34 min, two subjects were successful by producing their novel vocalizations into the instrument, hence, confirming active voicing. Beyond expectation, however, within <1 hour, both subjects found opposite strategies to significantly alter their voice duration and frequency to better activate the membranophone, further demonstrating plastic voice control as a result of experience with the instrument. Results highlight how individual differences in vocal proficiency between great apes may affect performance in experimental tests. Failing to adjust a test's difficulty level to individuals' vocal skill may lead to false negatives, which may have largely been the case in past studies now used as "textbook fact" for great ape "missing" vocal capacities. Results qualitatively differ from small changes that can be caused in innate monkey calls by intensive months-long conditional training. Our findings verify that active voicing beyond the typical range of the species' repertoire, which in our species underpins the acquisition of new voiced speech sounds, is not uniquely human among great apes.


Assuntos
Pongo/fisiologia , Espectrografia do Som , Vocalização Animal/fisiologia , Voz/fisiologia , Animais , Feminino , Masculino , Membranas
20.
Sci Rep ; 9(1): 18914, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831862

RESUMO

Dance is an icon of human expression. Despite astounding diversity around the world's cultures and dazzling abundance of reminiscent animal systems, the evolution of dance in the human clade remains obscure. Dance requires individuals to interactively synchronize their whole-body tempo to their partner's, with near-perfect precision. This capacity is motorically-heavy, engaging multiple neural circuitries, but also dependent on an acute socio-emotional bond between partners. Hitherto, these factors helped explain why no dance forms were present amongst nonhuman primates. Critically, evidence for conjoined full-body rhythmic entrainment in great apes that could help reconstruct possible proto-stages of human dance is still lacking. Here, we report an endogenously-effected case of ritualized dance-like behaviour between two captive chimpanzees - synchronized bipedalism. We submitted video recordings to rigorous time-series analysis and circular statistics. We found that individual step tempo was within the genus' range of "solo" bipedalism. Between-individual analyses, however, revealed that synchronisation between individuals was non-random, predictable, phase concordant, maintained with instantaneous centi-second precision and jointly regulated, with individuals also taking turns as "pace-makers". No function was apparent besides the behaviour's putative positive social affiliation. Our analyses show a first case of spontaneous whole-body entrainment between two ape peers, thus providing tentative empirical evidence for phylogenies of human dance. Human proto-dance, we argue, may have been rooted in mechanisms of social cohesion among small groups that might have granted stress-releasing benefits via gait-synchrony and mutual-touch. An external sound/musical beat may have been initially uninvolved. We discuss dance evolution as driven by ecologically-, socially- and/or culturally-imposed "captivity".


Assuntos
Dança , Relações Interpessoais , Movimento/fisiologia , Comportamento Social , Animais , Feminino , Pan troglodytes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA