Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Ecotoxicol Environ Saf ; 243: 113984, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988383

RESUMO

Aquatic environments have been found to be contaminated with a variety of inorganic and organic UV filters. This includes novel nano-sized titanium dioxide (TiO2) composite particles, which have been increasingly developed and incorporated into commercial sunscreens in recent years. So far, relatively little is known about the effects of this novel class of UV filters on aquatic life. Therefore, this study aimed to determine and compare the toxicity of three such nanoparticulate TiO2 UV filters with different surface coatings, namely Eusolex® T-Avo (SiO2-coated), T-Lite™ SF (Al(OH)3/PDMS-coated), and Eusolex® T-S (Al2O3/stearic acid-coated) either alone, or in the presence of selected organic UV filters (octinoxate, avobenzone, octocrylene), toward fish using RTgill-W1 cell cultures as an in vitro experimental model. Besides standard exposure protocols, alternative approaches (i.e., exposure to water accommodated fractions (WAFs), hanging-drop exposure) were explored to account for nanoparticle (NP)-specific fate in the medium and obtain additional/complementary information on their toxicity in different conditions. The AlamarBlue, CFDA-AM and Neutral Red Retention (NR) assays were used to measure effects on different cellular endpoints. Transmission electron microscopy (TEM) was used to examine NP uptake. Our results showed that none of the TiO2 NP UV filters were cytotoxic at the concentrations tested (0.1-10 µg/mL; 24 h) but there were differences in their uptake by the cells. Thus, only the hydrophilic T-AVO was detected inside cells, but the hydrophobic T-Lite SF and T-S were not. In addition, our results show that the presence of NPs (or the used dispersant) tended to decrease organic UV filter toxicity. The level of combination effect depended on both NP-type (surface chemistry) and concentration, suggesting that the reduced toxicity resulted from reduced availability of the organic UV filters due to their adsorption to the NP surface. Thus, mixtures of TiO2 NP UV filters and organic UV filters may have a different toxicological profile compared to the single substances, but probably do not pose an increased hazard.


Assuntos
Brânquias , Nanocompostos , Animais , Peixes , Dióxido de Silício , Protetores Solares/química , Protetores Solares/toxicidade , Titânio/química , Titânio/toxicidade
2.
Ecotoxicol Environ Saf ; 207: 111523, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120279

RESUMO

The textile industry, while of major importance in the world economy, is a toxic industry utilizing and emitting thousands of chemical substances into the aquatic environment. The aim of this project was to study the potentially harmful effects associated with the leaching of chemical residues from three different types of textiles: sportswear, children's bath towels, and denim using different fish models (cell lines, fish larvae and juvenile fish). A combination of in vitro and in vivo test systems was used. Numerous biomarkers, ranging from gene expression, cytotoxicity and biochemical analysis to behavior, were measured to detect effects of leached chemicals. Principle findings indicate that leachates from all three types of textiles induced cytotoxicity on fish cell lines (RTgill-W1). Leachates from sportswear and towels induced mortality in zebrafish embryos, and chemical residues from sportswear reduced locomotion responses in developing larval fish. Sportswear leachate increased Cyp1a mRNA expression and EROD activity in liver of exposed brown trout. Leachates from towels induced EROD activity and VTG in rainbow trout, and these effects were mitigated by the temperature of the extraction process. All indicators of toxicity tested showed that exposure to textile leachate can cause adverse reactions in fish. These findings suggested that chemical leaching from textiles from domestic households could pose an ecotoxicological threat to the health of the aquatic environment.


Assuntos
Oncorhynchus mykiss/fisiologia , Indústria Têxtil , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecotoxicologia , Expressão Gênica , Fígado/efeitos dos fármacos , Têxteis
3.
Ecotoxicol Environ Saf ; 167: 250-258, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30342358

RESUMO

In vitro experimental systems based on continuous piscine cell lines can be used as an alternative to animal tests for obtaining qualitative and quantitative information on the possible fate and effect of chemicals in fish. However, their capability to reproduce complex metabolic processes and toxic responses as they occur in vivo is limited due to the lack of organ-specific tissue architecture and functions. Here we introduce a three-dimensional (3D) in vitro experimental system based on spheroidal aggregate cultures (spheroids) of the continuous rainbow trout liver cell line RTL-W1 and provide a first description of their structural and functional properties including growth, viability/longevity, metabolic activity, ultrastructure and cytochrome P450 1A (CYP1A) expression determined by bright-field, multi-photon fluorescence and transmission electron microscopy as well as RT-qPCR analysis. Our results show that RTL-W1 cells in 3D spheroids (ø ~ 150 µm) (including those in the interior) were viable, metabolically active and had higher basal and ß-naphthoflavone-induced CYP1A expression levels than conventional 2D cell cultures. Furthermore, they displayed ultrastructural characteristics similar to differentiated hepatocytes. The available evidence suggests that 3D RTL-W1 spheroids may have enhanced hepatotypic functions and be a superior in vitro model to assess hepatic biotransformation, bioaccumulation and chronic toxicity compared to conventional cell monolayer cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Hepatócitos , Fígado/citologia , Oncorhynchus mykiss/fisiologia , Esferoides Celulares , Animais , Sobrevivência Celular , Citocromo P-450 CYP1A1/metabolismo , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Fígado/efeitos dos fármacos , RNA Mensageiro/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/ultraestrutura , beta-Naftoflavona/metabolismo
4.
Environ Toxicol ; 30(10): 1192-204, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24706484

RESUMO

Graphene and its derivatives are an emerging class of carbon nanomaterial with great potential for a broad range of industrial and consumer applications. However, their increasing production and use is expected to result in release of nano-sized graphene platelets into the environment, where they may interact with chemical pollutants modifying their fate and toxic potential. The objective of this study was to assess whether graphene nanoplatelets can act as vector for aromatic environmental pollutants increasing their cellular uptake and associated hazardous effects in vitro. For this purpose, cell cultures of the topminnow fish (Poeciliopsis lucida) hepatoma cell line PLHC-1 were simultaneously (and successively) exposed to graphene nanoplatelets (graphene oxide (GO) or carboxyl graphene (CXYG)) and an aryl hydrocarbon receptor (AhR) agonist (ß-naphthoflavone (ß-NF), benzo(k)fluoranthene (BkF) or 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169)). Following exposure cytochrome P450 1A (Cyp1A) induction was assessed by measuring cyp1A mRNA expression levels using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Cyp1A-dependent ethoxyresorufin-O-deethylase (EROD) activity. It was observed that pre- and co-exposure of cells to GO and CXYG nanoplatelets had a potentiating effect on ß-NF, BkF, and PCB169-dependent Cyp1A induction suggesting that graphene nanoplatelets increase the effective concentration of AhR agonists by facilitating their passive diffusion into the cells by damaging the cells' plasma membrane and/or by transporting them over the plasma membrane via a Trojan horse-like mechanism. The results demonstrate the existence of combination effects between nanomaterials and environmental pollutants and stress the importance of considering these effects when evaluating their respective hazard.


Assuntos
Poluentes Ambientais/toxicidade , Grafite/química , Nanoestruturas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Poluentes Ambientais/química , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Peixes , Fluorenos/toxicidade , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Nanoestruturas/química , Bifenilos Policlorados/toxicidade , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética , beta-Naftoflavona/toxicidade
5.
Part Fibre Toxicol ; 10: 27, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23849434

RESUMO

BACKGROUND: Graphene and graphene derivative nanoplatelets represent a new generation of nanomaterials with unique physico-chemical properties and high potential for use in composite materials and biomedical devices. To date little is known about the impact graphene nanomaterials may have on human health in the case of accidental or intentional exposure. The objective of this study was to assess the cytotoxic potential of graphene nanoplatelets with different surface chemistry towards a human hepatoma cell line, Hep G2, and identify the underlying toxicity targets. METHODS: Graphene oxide (GO) and carboxyl graphene (CXYG) nanoplatelet suspensions were obtained in water and culture medium. Size frequency distribution of the suspensions was determined by means of dynamic light scattering. Height, lateral dimension and shape of the nanoplatelets were determined using atomic force and electron microscopy. Cytotoxicity of GO and CXYG nanoplatelets was assessed in Hep G2 cells using a battery of assays covering different modes of action including alterations of metabolic activity, plasma membrane integrity and lysosomal function. Induction of oxidative stress was assessed by measuring intracellular reactive oxygen species levels. Interaction with the plasma membrane, internalization and intracellular fate of GO and CXYG nanoplatelets was studied by scanning and transmission electron microscopy. RESULTS: Supplementing culture medium with serum was essential to obtain stable GO and CXYG suspensions. Both graphene derivatives had high affinity for the plasma membrane and caused structural damage of the latter at concentrations as low as 4 µg/ml. The nanoplatelets penetrated through the membrane into the cytosol, where they were concentrated and enclosed in vesicles. GO and CXYG accumulation in the cytosol was accompanied by an increase in intracellular reactive oxygen species (ROS) levels, alterations in cellular ultrastructure and changes in metabolic activity. CONCLUSIONS: GO and CXYG nanoplatelets caused dose- and time-dependent cytotoxicity in Hep G2 cells with plasma membrane damage and induction of oxidative stress being important modes of toxicity. Both graphene derivatives were internalized by Hep G2, a non-phagocytotic cell line. Moreover, they exerted no toxicity when applied at very low concentrations (< 4 µg/ml). GO and CXYG nanoplatelets may therefore represent an attractive material for biomedical applications.


Assuntos
Carcinoma Hepatocelular/patologia , Membrana Celular/efeitos dos fármacos , Grafite/toxicidade , Neoplasias Hepáticas/patologia , Nanoestruturas/toxicidade , Transporte Biológico , Carcinoma Hepatocelular/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Citosol/metabolismo , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Grafite/química , Grafite/metabolismo , Células Hep G2 , Humanos , Luz , Neoplasias Hepáticas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Espalhamento de Radiação , Propriedades de Superfície , Fatores de Tempo
6.
Aquat Toxicol ; 253: 106343, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36327689

RESUMO

Titanium dioxide nanoparticles (n-TiO2) and polychlorinated biphenyls (PCBs) can be present in the food of fish, leading to intestinal exposure uptake, and accumulation in inner organs. This study examined combination effects of n-TiO2 and PCB77 in vitro models of the fish intestinal epithelium and liver, i.e., RTgut-GC cell cultures grown in ThinCerts™ and RTL-W1 cell cultures grown in standard tissue culture plates. Mass spectrometry and microscopy techniques were used to obtain information on nanoparticle translocation across the intestinal barrier model. In addition, the substances' effect on intestinal barrier permeability, cell viability, expression of dioxin - and antioxidant response element -controlled genes, and induction of cytochrome P450 1a (Cyp1a)-dependent ethoxyresorufin-O-deethylase (EROD) activity were assessed. TiO2 nanoparticles were taken up by RTgut-GC cells and detected in the bottom compartment of the intestinal epithelial barrier model. It was not possible to conclude definitively if n-TiO2 translocation occurred via transcytosis or paracellular migration but observations of nanoparticles in the lateral space between adjacent epithelial cells were rare. PCB77 (1 and 10 µM, 24 h) did not affect barrier permeability, i.e., n-TiO2 translocation is probably not facilitated in case of co-exposure. Furthermore, previous and simultaneous exposure to n-TiO2 (1 and 10 mg/L, 24 h) did not have any influence on PCB77-induced Cyp1a mRNA and enzyme activity levels in RTL-W1 cells. Furthermore, there were no significant differences in expression of antioxidant response element-controlled genes comparing control, single substance, and mixture treatments, not even following long-term exposure (0.01-1 mg/L n-TiO2 + 1 nM PCB77, 4 weeks). While an underestimation of the effects of n-TiO2 and PCB77 cannot be fully excluded as concentration losses due to sorption to cell culture plastics were not measured, the results suggest that the test substances probably have a low potential to exhibit combination effects on the assessed endpoints when co-existing in fish tissues.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Fígado , Titânio/farmacologia , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Peixes
7.
MethodsX ; 8: 101206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434729

RESUMO

There is increasing concern that particulate contaminants including manufactured nanomaterials and nano- and microplastics taken up and or accumulating in lower-trophic level aquatic organisms results in dietary exposure of fish feeding on these organisms. Controlled feeding studies can help advance our understanding of dietary uptake, bioaccumulation, and associated effects of (nano)particulate contaminants in fish, and also provide information about their likelihood to be transferred along the trophic chain and or to act as vector for other, surface-adsorbed pollutants. However, traditional approaches to prepare test feed for dietary exposure studies where commercial fish feed such as flakes, granules or pellets are soaked or spray-spiked with dissolved chemicals are not well suitable for (nano-)particulate contaminants. Microplastics, which often have sizes in the µm to mm range, and manufactured nanomaterials, in particular those which are soluble, such as metal/metal oxide nanoparticles, have to be incorporated into the feed to avoid their dissociation and or dissolution before the feed is ingested by the animal to avoid undesired waterborne exposure, which may confound results.•Here we describe a methodological approach to produce worm-shaped food packages, that is a practical diet, of controlled diameter and length (in the millimeter range), which allows to prepare food rations with a weight in the order of a few milligrams and to adjust the food rations to the individual body wet weight of small experimental fish with high accuracy (±0.5 mg) without the need for weighing/proportioning the feed using a scale.•The method can be used to prepare test feed with internally incorporated particulate contaminants, such as manufactured nanomaterials and nano- and microplastics, to assess the latter's dietary uptake, bioaccumulation and associated toxicity in fish. We described two protocol variations: One using dry starting material, such as feed flakes, and one using liquid starting material, such as worm homogenate.•The method has been developed for academic research environments with no access to specialized equipment for test feed preparation, and uses utensils and inexpensive plastic ware belonging to the standard inventory of ecotoxicological research laboratories.

8.
Sci Total Environ ; 757: 143779, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33279190

RESUMO

Copper oxide nanoparticles (CuO NPs) accumulating in sediment can be taken up by invertebrates that serve as prey for fish. Thus, it is likely that the latter are exposed to CuO NPs via the gut. However, to this day it is unknown if CuO NPs can be taken up via the gastrointestinal tract and if and in which tissues/organs they accumulate. To address this knowledge gap, we synthesized CuO NPs enriched in the stable isotope 65Cu and incorporated them at low concentration (5 µg 65Cu g-1 ww food) into a practical diet prepared from worm homogenate, which was then fed to Three-spined Stickleback (Gasterosteus aculeatus) for 16 days. For comparison, fish were exposed to a diet spiked with a 65CuCl2 solution. Background Cu and newly taken up 65Cu in fish tissues/organs including gill, stomach, intestine, liver, spleen, gonad and carcass and feces were quantified by ICP-MS. In addition, expression levels of genes encoding for proteins related to Cu uptake, detoxification and toxicity (ctr-1, gcl, gr, gpx, sod-1, cat, mta and zo-1) were measured in selected tissues using RT-qPCR. The obtained results showed that feces of fish fed 65CuO NP-spiked diet contained important amounts of 65Cu. Furthermore, there was no significant accumulation of 65Cu in any of the analyzed internal organs, though 65Cu levels were slightly elevated in liver. No significant modulation in gene expression was measured in fish exposed to 65CuO NP-spiked diet, except for metallothionein, which was significantly upregulated in intestinal tissue compared to control fish. Altogether, our results suggests that dietary absorption efficiency of CuO NPs, their uptake across the gastrointestinal barrier into the organism, and effects on Cu-related genes is limited at low, environmentally relevant exposure doses (0.2 µg 65Cu -1 fish ww day-1).


Assuntos
Nanopartículas Metálicas , Smegmamorpha , Poluentes Químicos da Água , Cobre/análise , Cobre/toxicidade , Dieta/veterinária , Isótopos , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade
9.
Environ Sci Pollut Res Int ; 26(15): 15354-15372, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30929178

RESUMO

There is increasing evidence that titanium dioxide (TiO2) nanoparticles (NPs) present in water or diet can be taken up by fish and accumulate in internal organs including the liver. However, their further fate in the organ is unknown. This study provides new insights into the interaction, uptake mechanism, intracellular trafficking, and fate of TiO2 NPs (Aeroxide® P25) in fish liver parenchymal cells (RTL-W1) in vitro using high-resolution transmission electron microscopy (TEM) and single particle inductively coupled plasma mass spectrometry (spICP-MS) as complementary analytical techniques. The results demonstrate that following their uptake via caveolae-mediated endocytosis, TiO2 NPs were trafficked through different intracellular compartments including early endosomes, multivesicular bodies, and late endosomes/endo-lysosomes, and eventually concentrated inside multilamellar vesicles. TEM and spICP-MS results provide evidence that uptake was nano-specific. Only NPs/NP agglomerates of a specific size range (~ 30-100 nm) were endocytosed; larger agglomerates were excluded from uptake and remained located in the extracellular space/exposure medium. NP number and mass inside cells increased linearly with time and was associated with an increase in particle diameter suggesting intracellular agglomeration/aggregation. No alterations in the expression of genes regulated by the redox balance-sensitive transcription factor Nrf-2 including superoxide dismutase, glutamyl cysteine ligase, glutathione synthetase, glutathione peroxidase, and glutathione S-transferase were observed. This shows that, despite the high intracellular NP burden (~ 3.9 × 102 ng Ti/mg protein after 24 h) and NP-interaction with mitochondria, cellular redox homeostasis was not significantly affected. This study contributes to a better mechanistic understanding of in vitro particokinetics as well as the potential fate and effects of TiO2 NPs in fish liver cells.


Assuntos
Fígado/efeitos dos fármacos , Nanopartículas/metabolismo , Oncorhynchus mykiss , Titânio/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Linhagem Celular , Ecotoxicologia/métodos , Endocitose/efeitos dos fármacos , Proteínas de Peixes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/citologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Espectrometria de Massas/métodos , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Aquat Toxicol ; 213: 105195, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203167

RESUMO

Titanium dioxide nanoparticles (n-TiO2) are among the man-made nanomaterials that are predicted to be found at high concentrations in the aquatic environment. There, they likely co-exist with other chemical pollutants. Thus, n-TiO2 and other chemical pollutants can be taken up together or accumulate independently from each other in prey organisms of fish. This can lead to dietary exposure of fish to n-TiO2-chemical pollutant mixtures. In this study, we examine if simultaneous dietary exposure to n-TiO2 and 3,3',4,4'-Tetrachlorobiphenyl (PCB77) -used as a model compound for persistent organic pollutants with dioxin-like properties- can influence the uptake and toxicological response elicited by the respective other substance. Juvenile brown trout (Salmo trutta) were fed custom-made food pellets containing n-TiO2, PCB77 or n-TiO2+PCB77 mixtures for 15 days. Ti and PCB77 concentrations in the liver were measured by ICP-MS and GC-MS, respectively. Besides, n-TiO2 uptake was assessed using TEM. Combination effects on endpoints specific for PCB77 (i.e., cytochrome P450 1A (CYP1A) induction) and endpoints shared by both PCB77 and n-TiO2 (i.e., oxidative stress-related parameters) were measured in intestine and liver using RT-qPCR and enzyme activity assays. The results show that genes encoding for proteins/enzymes essential for tight junction function (zo-1) and ROS elimination (sod-1) were significantly upregulated in the intestine of fish exposed to n-TiO2 and PCB77 mixtures, but not in the single-substance treatments. Besides, n-TiO2 had a potentiating effect on PCB77-induced CYP1A and glutathione reductase (GR) expression/enzyme activity in the liver. This study shows that simultaneous dietary exposure to nanomaterials and traditional environmental pollutants might result in effects that are larger than observed for the substances alone, but that understanding the mechanistic basis of such effects remains challenging.


Assuntos
Dieta , Exposição Ambiental , Nanopartículas/toxicidade , Bifenilos Policlorados/toxicidade , Titânio/toxicidade , Truta/fisiologia , Animais , Biomarcadores/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Comportamento Alimentar , Regulação da Expressão Gênica/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/ultraestrutura , Metalotioneína/metabolismo , Nanopartículas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poluentes Químicos da Água/toxicidade
12.
Aquat Toxicol ; 150: 55-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24642293

RESUMO

Graphene and graphene derivatives constitute a novel class of carbon-based nanomaterials being increasingly produced and used in technical and consumer applications. Release of graphene nanoplatelets during the life cycle of these applications may result in human and environmental exposure calling for assessment of their potential to cause harm to humans and wildlife. This study aimed to assess the toxicity of graphene oxide (GO) and carboxyl graphene (CXYG) nanoplatelets to non-mammalian species using the fish cell line PLHC-1 as in vitro model. The cytotoxicity of GO and CXYG was assessed using different assays measuring alterations in plasma membrane integrity, metabolic activity, and lysosomal and mitochondrial function. The induction of oxidative stress was assessed by measuring intracellular reactive oxygen species (ROS) levels. Interaction with the plasma membrane and internalization of nanoplatelets were investigated by electron microscopy. Graphene nanoplatelets spontaneously penetrated through the plasma membrane and accumulated in the cytosol, where they further interacted with mitochondrial and nuclear membranes. PLHC-1 cells demonstrated significantly reduced mitochondrial membrane potential (MMP) and increased ROS levels at 16 µg/ml GO and CXYG (72 h), but barely any decrease in cell viability. The observation of intracellular graphene accumulations not enclosed by membranes suggests that GO and CXYG internalization in fish hepatoma cells occurs through an endocytosis-independent mechanism.


Assuntos
Citosol/metabolismo , Grafite/metabolismo , Grafite/toxicidade , Nanoestruturas/toxicidade , Organelas/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular , Citosol/efeitos dos fármacos , Citosol/ultraestrutura , Peixes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Organelas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo
13.
Nanotoxicology ; 7(5): 935-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22417080

RESUMO

The increasing presence of ZnO nanoparticles (NPs) in consumer products may be having a dramatic impact in aquatic environments. The evaluation of ZnO NP toxicity represents a great challenge. This study aimed at evaluating the cytotoxic effect of micro- and nanosized ZnO in a fish and a mammalian hepatoma cell line. A detailed characterisation of the particles in exposure media showed that ZnO NPs formed large aggregates. ZnO cytotoxicity was evaluated with a battery of in vitro assays including LUCS, a new approach based on DNA alteration measurements. In fish cells, ZnO NP aggregates contributed substantially to the cytotoxic effects whereas toxicity in the human cells appeared to be mainly produced by the dissolved fraction. ROS production did not contribute to the observed cytotoxicity. This work also showed that measuring concentrations of NPs is essential to understand the mechanisms underlying their toxicity.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/química , Óxido de Zinco/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , L-Lactato Desidrogenase/metabolismo , Luz , Espectrometria de Massas , Vermelho Neutro/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Poecilia , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA