RESUMO
The diversity of cell types and regulatory states in the brain, and how these change during aging, remains largely unknown. We present a single-cell transcriptome atlas of the entire adult Drosophila melanogaster brain sampled across its lifespan. Cell clustering identified 87 initial cell clusters that are further subclustered and validated by targeted cell-sorting. Our data show high granularity and identify a wide range of cell types. Gene network analyses using SCENIC revealed regulatory heterogeneity linked to energy consumption. During aging, RNA content declines exponentially without affecting neuronal identity in old brains. This single-cell brain atlas covers nearly all cells in the normal brain and provides the tools to study cellular diversity alongside other Drosophila and mammalian single-cell datasets in our unique single-cell analysis platform: SCope (http://scope.aertslab.org). These results, together with SCope, allow comprehensive exploration of all transcriptional states of an entire aging brain.
Assuntos
Envelhecimento , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Análise de Célula Única/métodos , Transcriptoma , Animais , Drosophila melanogaster/fisiologia , Feminino , Perfilação da Expressão Gênica , MasculinoRESUMO
DNA-based enzymes, or DNAzymes, are single-stranded DNA sequences with the ability to catalyze various chemical reactions, including the cleavage of the bond between two RNA nucleotides. Lately, an increasing interest has been observed in these RNA-cleaving DNAzymes in the biosensing and therapeutic fields for signal generation and the modulation of gene expression, respectively. Additionally, multiple efforts have been made to study the effects of the reaction environment and the sequence of the catalytic core on the conversion of the substrate into product. However, most of these studies have only reported alterations of the general reaction course, but only a few have focused on how each individual reaction step is affected. In this work, we present for the first time a mathematical model that describes and predicts the reaction of the 10-23 RNA-cleaving DNAzyme. Furthermore, the model has been employed to study the effect of temperature, magnesium cations and shorter substrate-binding arms of the DNAzyme on the different kinetic rate constants, broadening the range of conditions in which the model can be exploited. In conclusion, this work depicts the prospects of such mathematical models to study and anticipate the course of a reaction given a particular environment.
Assuntos
DNA Catalítico , Catálise , Domínio Catalítico , DNA de Cadeia Simples/genética , RNA/genéticaRESUMO
Extracellular vesicles (EVs) have attracted great attention as potential biomarkers for cancer diagnostics. Although several technologies have been developed for EV detection, many of them are still not applicable to clinical settings as they rely on complex EV isolation processes, while lacking sensitivity, specificity or standardization. To solve this problem, we have developed a sensitive breast cancer-specific EV detection bioassay directly in blood plasma using a fiber-optic surface plasmon resonance (FO-SPR) biosensor, previously calibrated with recombinant EVs. First, we established a sandwich bioassay to detect SK-BR-3 EVs by functionalizing the FO-SPR probes with anti-HER2 antibodies. A calibration curve was built using an anti-HER2/Banti-CD9 combination, resulting in an LOD of 2.1 × 107 particles/mL in buffer and 7 × 108 particles/mL in blood plasma. Next, we investigated the potential of the bioassay to detect MCF7 EVs in blood plasma using an anti-EpCAM/Banti-mix combination, obtaining an LOD of 1.1 × 10 8 particles/mL. Finally, the specificity of the bioassay was proven by the absence of signal when testing plasma samples from 10 healthy people unknown to be diagnosed with breast cancer. The remarkable sensitivity and specificity of the developed sandwich bioassay together with the advantages of the standardized FO-SPR biosensor highlight outstanding potential for the future of EV analysis.
Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Vesículas Extracelulares , Feminino , Humanos , Biomarcadores , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Ressonância de Plasmônio de Superfície/métodosRESUMO
Medical diagnostics is moving toward disease-related target detection at very low concentrations because of the (1) quest for early-stage diagnosis, at a point where only limited target amounts are present, (2) trend toward minimally invasive sample extraction, yielding samples containing low concentrations of target, and (3) need for straightforward sample collection, usually resulting in limited volume collected. Hence, diagnostic tools allowing ultrasensitive target detection at the point-of-care (POC) are crucial for simplified and timely diagnosis of many illnesses. Therefore, we developed an innovative, fully integrated, semi-automated, and economically viable platform based on (1) digital microfluidics (DMF), enabling automated manipulation and analysis of very low sample volumes and (2) low-cost disposable DMF chips with microwell arrays, fabricated via roll-to-roll processes and allowing digital target counting. Thyroid stimulating hormone detection was chosen as a relevant application to show the potential of the system. The assay buffer was selected using design of experiments, and the assay was optimized in terms of reagent concentration and incubation time toward maximum sensitivity. The hydrophobic-in-hydrophobic microwells showed an unparalleled seeding efficiency of 97.6% ± 0.6%. A calculated LOD of 0.0013 µIU/mL was obtained, showing the great potential of the platform, especially taking into account the very low sample volume analyzed (1.1 µL). Although validation (in biological matrix) and industrialization (full automation) steps still need to be taken, it is clear that the combination of DMF, low-cost DMF chips, and digital analyte counting in microwell arrays enables the implementation of ultrasensitive and reliable target detection at the POC.
Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Tireotropina , Automação , Bioensaio , Microfluídica/métodosRESUMO
Continuous biosensors provide real-time information about biochemical processes occurring in the environment of interest and are therefore highly desirable in research, diagnostics and industrial settings. Although remarkable progress has been made in the field of biosensing, most biosensors still rely on batch processes and, thus, are not suited to perform continuous measurements. Recently, however, it has been shown that by combining affinity-based nanoswitches with state-dependent readout platforms, the necessity for batch processes can be overcome and affinity-based continuous biosensing can be achieved. In this review, we first provide an overview of affinity-based continuous biosensing and discuss the required components to achieve this goal. More specifically, we summarize the strategies that have been applied to develop and tune both protein and nucleic acid-based switches, as well as readout strategies that can be applied in combination with the former. Afterwards, biosensors in which both elements were already integrated and hence enabled continuous measurements are reviewed. We also discuss the challenges and opportunities associated with each approach and therefore believe this review can help to encourage and guide future research towards continuous biosensing.
Assuntos
Técnicas Biossensoriais , Ácidos NucleicosRESUMO
Single cell analyses have gained increasing interest over bulk approaches because of considerable cell-to-cell variability within isogenic populations. Herein, flow cytometry remains golden standard due to its high-throughput efficiency and versatility, although it does not allow to investigate the interdependency of cellular events over time. Starting from our microfluidic platform that enables to trap and retain individual cells on a fixed location over time, here, we focused on unraveling kinetic responses of single Saccharomyces cerevisiae yeast cells upon treatment with the antifungal plant defensin HsAFP1. We monitored the time between production of reactive oxygen species (ROS) and membrane permeabilization (MP) in single yeast cells for different HsAFP1 doses using two fluorescent dyes with non-overlapping spectra. Within a time frame of 2 min, only <0.3% cells displayed time between the induction of ROS and MP. Reducing the time frame to 30 s did not result in increased numbers of cells with time between these events, pointing to ROS and MP induction as highly dynamic and correlated processes. In conclusion, using an in-house developed continuous microfluidic platform, we investigated the mode of action of HsAFP1 at single cell level, thereby uncovering the close interdependency between ROS induction and MP in yeast.
Assuntos
Defensinas/farmacologia , Fungicidas Industriais/farmacologia , Heuchera/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Permeabilidade da Membrana Celular/efeitos dos fármacos , Branqueamento de Corais , Viabilidade Microbiana/efeitos dos fármacos , Técnicas Analíticas Microfluídicas , Proteínas de Plantas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única , Fatores de TempoRESUMO
Antibody characterization is essential for understanding the immune system and development of diagnostics and therapeutics. Current technologies are mainly focusing on the detection of antigen-specific immunoglobulin G (IgG) using bulk singleplex measurements, which lack information on other isotypes and specificity of individual antibodies. Digital immunoassays based on nucleic acid amplification have demonstrated superior performance by allowing the detection of single molecules in a multiplex and sensitive manner. In this study, we demonstrate for the first time an immuno-rolling circle amplification (immuno-RCA) assay for the multiplex detection of three antigen-specific antibody isotypes (IgG, IgA, and IgM) and its integration with microengraving. To validate this approach, we used the autoimmune disease immune-mediated thrombotic thrombocytopenic purpura (iTTP) as the model disease with anti-ADAMTS13 autoantibodies as the diagnostic target molecules. To identify the anti-ADAMTS13 autoantibody isotypes, we designed a pool of three unique antibody-oligonucleotide conjugates for identification and subsequent amplification and visualization via RCA. To validate this approach, we first confirmed an assay specificity of >88% and a low limit of detection of 0.3 ng/mL in the spiked buffer. Subsequently, we performed a dilution series of an iTTP plasma sample for the multiplex detection of the three isotypes with higher sensitivity compared to an enzyme-linked immunosorbent assay. Finally, we demonstrated single-cell analysis of human B cells and hybridoma cells for the detection of secreted antibodies using microengraving and achieved a detection of 23.3 pg/mL secreted antibodies per hour. This approach could help to improve the understanding of antibody isotype distributions and their roles in various diseases.
Assuntos
Autoanticorpos , Púrpura Trombocitopênica Trombótica , Antígenos , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina GRESUMO
Duplexed aptamers (DAs) are widespread aptasensor formats that simultaneously recognize and signal the concentration of target molecules. They are composed of an aptamer and aptamer complementary element (ACE) which consists of a short oligonucleotide that partially inhibits the aptamer sequence. Although the design principles to engineer DAs are straightforward, the tailored development of DAs for a particular target is currently based on trial and error due to limited knowledge of how the ACE sequence affects the final performance of DA biosensors. Therefore, we have established a thermodynamic model describing the influence of the ACE on the performance of DAs applied in equilibrium assays and demonstrated that this relationship can be described by the binding strength between the aptamer and ACE. To validate our theoretical findings, the model was applied to the 29-mer anti-thrombin aptamer as a case study, and an experimental relation between the aptamer-ACE binding strength and performance of DAs was established. The obtained results indicated that our proposed model could accurately describe the effect of the ACE sequence on the performance of the established DAs for thrombin detection, applied for equilibrium assays. Furthermore, to characterize the binding strength between the aptamer and ACEs evaluated in this work, a set of fitting equations was derived which enables thermodynamic characterization of DNA-based interactions through thermal denaturation experiments, thereby overcoming the limitations of current predictive software and chemical denaturation experiments. Altogether, this work encourages the development, characterization, and use of DAs in the field of biosensing.
Assuntos
Aptâmeros de Nucleotídeos , Imagem Individual de Molécula/métodos , Termodinâmica , Trombina/química , Técnicas Biossensoriais , Modelos Químicos , Ligação ProteicaRESUMO
Testing multiple biomarkers, as opposed to one, has become a preferred approach for diagnosing many heterogeneous diseases, such as cancer and infectious diseases. However, numerous technologies, including gold standard ELISA and PCR, can detect only one type of biomarker, either protein or nucleic acid (NA), respectively. In this work, we report for the first time simultaneous detection of proteins and NAs in the same solution, using solely functional NA (FNA) molecules. In particular, we combined the thrombin binding aptamer (TBA) and the 10-23 RNA-cleaving DNA enzyme (DNAzyme) in a single aptazyme molecule (Aptazyme1.15-3'), followed by extensive optimization of buffer composition, sequences and component ratios, to establish a competitive bioassay. Subsequently, to establish a multiplex bioassay, we designed a new aptazyme (Aptazyme2.20-5') by replacing the target recognition and substrate sequences within Aptazyme1.15-3'. This designing process included an in silico study, revealing the impact of the target recognition sequence on the aptazyme secondary structure and its catalytic activity. After proving the functionality of the new aptazyme in a singleplex bioassay, we demonstrated the capability of the two aptazymes to simultaneously detect thrombin and NA target, or two NA targets in a multiplex bioassay. High specificity in target detection was achieved with the limits of detection in the low nanomolar range, comparable to the singleplex bioassays. The presented results deepen the barely explored features of FNA for diagnosing multiple targets of different origins, adding an extra functionality to their catalogue.
Assuntos
Bioensaio/métodos , Técnicas Biossensoriais/métodos , DNA Catalítico/metabolismo , DNA/química , Ácidos Nucleicos/química , Trombina/química , DNA Catalítico/química , Humanos , Nanotecnologia , Reprodutibilidade dos TestesRESUMO
The polymerase chain reaction (PCR) has been the gold standard molecular analysis technique for decades and has seen quite some evolution in terms of reaction components, methodology, and readout mechanisms. Nucleic acid enzymes (NAzymes) have been used to further exploit the applications of PCR, but so far the work was limited to the colorimetric G-quadruplex or fluorescent substrate cleaving NAzymes. In this study, a solid-phase, fiber optic surface plasmon resonance (FO-SPR) technique is presented as an alternative readout for PCR utilizing NAzymes. First, the surface cleavage activity of DNAzyme-extended amplicons (DNAzyme-amps) is established, followed by optimization of the PCR conditions, which are required for compatibility with the FO-SPR system. Next, by integrating the complement of a 10-23 DNAzyme into the primer pair, PCR-amplified DNAzyme-amps were generated, tested, and validated on qPCR for the detection of the antimicrobial resistance gene MCR-2. Once validated, this primer concept was developed as a one-step assay, driven by PCR-amplified DNAzymes, for FO-SPR-based sensitive and specific detection. Using gold nanoparticle labeled RNA-DNA hybrid strands as substrate for the DNAzyme, PCR-amplified DNAzyme-amps generated in the presence of MCR-2 gene were monitored in real-time, which resulted in an experimental limit of detection of 4 × 105 copy numbers or 6.6 fM. In addition, the DNAzyme-based FO-PCR assay was able to discriminate between the MCR-1 and MCR-2 genes, to further prove the specificity of this assay. Henceforth, this DNAzyme-based fiber optic PCR assay provides a universally applicable, real-time system for the detection of virtually any target NA, in a specific and sensitive manner.
Assuntos
DNA Catalítico/genética , DNA Catalítico/metabolismo , Proteínas de Membrana/genética , Fibras Ópticas , Reação em Cadeia da Polimerase , Ressonância de Plasmônio de Superfície/instrumentação , Calibragem , Fatores de TempoRESUMO
Autoantibodies are key biomarkers in clinical diagnosis of autoimmune diseases routinely detected by enzyme-linked immunosorbent assays (ELISAs). However, the complexity of these assays is limiting their use in routine diagnostics. Fiber optic-surface plasmon resonance (FO-SPR) can overcome these limitations, but improved surface chemistries are still needed to guarantee detection of autoantibodies in complex matrices. In this paper, we describe the development of an FO-SPR immunoassay for the detection of autoantibodies in plasma samples from immune-mediated thrombotic thrombocytopenic purpura (iTTP) patients. Hereto, hexahistidine-tagged recombinant ADAMTS13 (rADAMTS13-His6) was immobilized on nitrilotriacetic acid (NTA)-coated FO probes chelated by cobalt (Co(III)) and exposed to anti-ADAMTS13 autoantibodies. Initial studies were performed to optimize rADAMTS13-His6 immobilization and to confirm the specificity of the immunoassay for detection of anti-ADAMTS13 autoantibodies with FO-SPR. The performance of the immunoassay was then evaluated by comparing Co(III)- and nickel (Ni(II))-NTA stabilized surfaces, confirming the stable immobilization of the antigen in Co(III)-NTA-functionalized FO probes. A calibration curve was prepared with a dilution series of a cloned human anti-ADAMTS13 autoantibody in ADAMTS13-depleted plasma resulting in an average interassay coefficient of variation of 7.1% and a limit of detection of 0.24 ng/mL. Finally, the FO-SPR immunoassay was validated using seven iTTP patient plasma samples, resulting in an excellent correlation with an in-house-developed ELISA (r = 0.973). In summary, the specificity and high sensitivity in combination with a short time-to-result (2.5 h compared to 4-5 h for a regular ELISA) make the FO-SPR immunoassay a powerful assay for routine diagnosis of iTTP and with extension for any other autoimmune disease.
Assuntos
Autoanticorpos/sangue , Técnicas Biossensoriais/métodos , Cobre/química , Ácido Nitrilotriacético/química , Ressonância de Plasmônio de Superfície , Proteína ADAMTS13/química , Proteína ADAMTS13/genética , Proteína ADAMTS13/metabolismo , Tecnologia de Fibra Óptica , Histidina/genética , Histidina/metabolismo , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Imunoensaio , Limite de Detecção , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Púrpura Trombocitopênica Trombótica/diagnósticoRESUMO
Metabolic engineering increasingly depends upon RNA technology to customly rewire the metabolism to maximize production. To this end, pure riboregulators allow dynamic gene repression without the need of a potentially burdensome coexpressed protein like typical Hfq binding small RNAs and clustered regularly interspaced short palindromic repeats technology. Despite this clear advantage, no clear general design principles are available to de novo develop repressing riboregulators, limiting the availability and the reliable development of these type of riboregulators. Here, to overcome this lack of knowledge on the functionality of repressing riboregulators, translation inhibiting RNAs are developed from scratch. These de novo developed riboregulators explore features related to thermodynamical and structural factors previously attributed to translation initiation modulation. In total, 12 structural and thermodynamic features were defined of which six features were retained after removing correlations from an in silico generated riboregulator library. From this translation inhibiting RNA library, 18 riboregulators were selected using a experimental design and subsequently constructed and co-expressed with two target untranslated regions to link the translation inhibiting RNA features to functionality. The pure riboregulators in the design of experiments showed repression down to 6% of the original protein expression levels, which could only be partially explained by a ordinary least squares regression model. To allow reliable forward engineering, a partial least squares regression model was constructed and validated to link the properties of translation inhibiting RNA riboregulators to gene repression. In this model both structural and thermodynamic features were important for efficient gene repression by pure riboregulators. This approach enables a more reliable de novo forward engineering of effective pure riboregulators, which further expands the RNA toolbox for gene expression modulation.
Assuntos
Engenharia Metabólica/métodos , Engenharia de Proteínas/métodos , Proteínas Repressoras/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Expressão Gênica/fisiologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Genes Reguladores/genética , Conformação de Ácido Nucleico , RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Proteínas Repressoras/genéticaRESUMO
DNA- and MNAzymes are nucleic acid-based enzymes (NAzymes), which infiltrated the otherwise protein-rich field of enzymology three decades ago. The 10-23 core NAzymes are one of the most widely used and well-characterized NAzymes, but often require elevated working temperatures or additional complex modifications for implementation at standard room temperatures. Here, we present a generally applicable method, based on thermodynamic principles governing hybridization, to re-engineer the existing 10-23 core NAzymes for use at 23 °C. To establish this, we first assessed the activity of conventional NAzymes in the presence of cleavable and non-cleavable substrate at 23 °C as well as over a temperature gradient. These tests pointed towards a non-catalytic mechanism of signal generation at 23 °C, suggesting that conventional NAzymes are not suited for use at this temperature. Following this, several novel NAzyme-substrate complexes were re-engineered from the conventional ones and screened for their performance at 23 °C. The complex with substrate and substrate-binding arms of the NAzymes shortened by four nucleotides on each terminus demonstrated efficient catalytic activity at 23 °C. This has been further validated over a dilution of enzymes or enzyme components, revealing their superior performance at 23 °C compared to the conventional 10-23 core NAzymes at their standard operating temperature of 55 °C. Finally, the proposed approach was applied to successfully re-engineer three other new MNAzymes for activity at 23 °C. As such, these re-engineered NAzymes present a remarkable addition to the field by further widening the diverse repertoire of NAzyme applications.
Assuntos
DNA Catalítico/química , DNA Catalítico/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA/química , Engenharia de Proteínas , Catálise , Reprodutibilidade dos Testes , Especificidade por Substrato , Temperatura , TermodinâmicaRESUMO
In this work, we present a new iSIMPLE concept (infusion Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation), which requires no external power for activation nor liquid manipulation, it is easy to use while its fabrication method is extremely simple, inexpensive and suited for mass replication. The pump consists of a working liquid, which is - after finger activation - absorbed in a porous material (e.g. filter paper). The air expelled from the porous material increases the pressure in the downstream outlet channel and propels the outlet liquid (i.e. the sample) through the channel or ejects it. Here we investigated the influence of different filter papers on the iSIMPLE flow rates, achieving a wide range from 30 down to 0.07 µL/min. We also demonstrated the versatility of the iSIMPLE in terms of the liquid volume that can be manipulated (from 0.5 µL up to 150 µL) and the working pressure reaching 64 kPa, unprecedented high for a self-powered microfluidics pump. In addition, using a 34 G microneedle mounted on the iSIMPLE, we successfully injected liquids with different viscosities (from 0.93 up to 55.88 cP) both into an agarose matrix and a skin-like biological ex vivo substrate (i.e. chicken breast tissue). This work validated the compatibility of the iSIMPLE with drug delivery in a controlled way into a skin-like matrix, envisioning a whole new scenario for intradermal injections using self-contained skin patch. In addition, due to the extreme flexibility of the design and manufacturing, the iSIMPLE concept offers enormous opportunities for completely autonomous, portable and cost effective LOC devices.
Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Bombas de Infusão , Dispositivos Lab-On-A-Chip , Filtração , Agulhas , Papel , PressãoRESUMO
Transcriptional biosensors have various applications in metabolic engineering, including dynamic pathway control and high-throughput screening of combinatorial strain libraries. Previously, various biosensors have been created from naturally occurring transcription factors (TFs), largely relying on native sequences without the possibility to modularly optimize their response curve. The lack of design and engineering techniques thus greatly hinders the development of custom biosensors. In view of the intended application this is detrimental. In contrast, a bottom-up approach to design tailor-made biosensors was pursued here. Novel biosensors were created that respond to N-acetylneuraminic acid (Neu5Ac), an important sugar moiety with various biological functions, by employing native and engineered promoters that interact with the TF NanR. This bottom-up approach, whereby various tuned modules, e.g., the ribosome binding site (RBS) controlling NanR translation can be combined, enabled the reliable engineering of various response curve characteristics. The latter was validated by testing these biosensors in combination with various Neu5Ac-producing pathways, which allowed to produce up to 1.4 ± 0.4 g/L extracellular Neu5Ac. In this way, the repertoire of biosensors was expanded with seven novel functional Neu5Ac-responsive biosensors.
Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Ácido N-Acetilneuramínico/análise , Regiões Promotoras Genéticas , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Fluorometria , Ligação Proteica , Transcrição GênicaRESUMO
Monitoring the concentration of a therapeutic drug antibody, infliximab (IFX), is recommended for enhancing its efficacy in patients with inflammatory bowel disease (IBD). However, IFX concentrations are currently determined in patients' serum/plasma, which requires sample preparation from blood, hence hampering the turnaround time. In this paper, we present a short immunoassay (10 min) using a fiber-optic surface plasmon resonance (FO-SPR) biosensor for detection of IFX spiked in 100-fold diluted serum, plasma, and whole blood. The calculated limits of detection (LOD) based on calibration curves were 1.42, 1.00, and 1.34 ng/mL, respectively, which coincides with expected IFX concentrations in diluted samples from IBD patients. A linear correlation was established among different matrixes, indicating that the matrix effect was insignificant. The established point-of-care (POC) FO-SPR bioassay was also used to measure IFX in 100-fold diluted extracts of dried blood spots (DBS), and LOD achieved was below 2 ng/mL. Although DBS might be ideal for POC, this is the first report of using an SPR biosensor for measuring DBS samples. Finally, the POC FO-SPR immunoassay was validated by using matching serum and plasma samples from five IBD patients. A Pearson correlation of 0.968 was obtained between serum and plasma samples. IFX concentrations determined with FO-SPR were compared to a clinically validated enzyme-linked immunosorbent assay (ELISA), resulting in excellent Pearson correlation and intraclass correlation coefficient, both being 0.99 for serum and plasma samples. In conclusion, this paper demonstrates that our FO-SPR biosensor can be used as a true POC diagnostic tool for determining IFX concentrations in a variety of matrixes.
Assuntos
Técnicas Biossensoriais , Ensaio de Imunoadsorção Enzimática , Tecnologia de Fibra Óptica , Doenças Inflamatórias Intestinais/sangue , Infliximab/sangue , Ressonância de Plasmônio de Superfície , Calibragem , Humanos , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao LeitoRESUMO
The development of novel molecular sieves opens opportunities in the development of more sensitive analytical devices. In this paper, metal organic frameworks (MOFs), specifically ZIF-8 and ZIF-93, are grown on fiber optic based surface plasmon resonance (FO-SPR) sensors. FO-SPR has enabled sensitive sensing capabilities in biomedical settings and the addition of an MOF coating opens the way for the sensing of volatile organic compounds (VOCs) in gaseous media. FO-SPR probes were homogeneously functionalized with ZIF-8 and ZIF-93 in each case using two different precursor solutions to obtain a sequential nucleation and growth phase. The difference in MOF nucleation and growth kinetics of the two solutions was directly monitored by the FO-SPR system. The two established MOF-FO-SPR sensors were then subjected to sensing experiments with several alcohol vapors to establish their sensing capabilities. Vapors with mPa partial pressures, ppm concentrations, could successfully be detected, e.g., an LOD of 2.5 ppm for methanol detection was acquired. The difference in recognition behavior of the hydrophobic ZIF-8 and more hydrophilic ZIF-93 recognition layers can be exploited to yield qualitative information regarding the vapor composition.
RESUMO
Merging surface plasmon resonance (SPR) to fiber optic (FO) technology has brought remarkable achievements in the field by offering attractive advantages over the conventional prism-based SPR platforms, such as simplicity, cost-effectiveness and miniaturization. However, the performance of the existing FO-SPR instruments mainly depends on the device surface condition and in particular on the structural aspect of the thin gold (Au) plasmonic film deposited on the FO substrate. In this work, a simple cost-effective colloidal lithography technique (CLT) was adapted and applied for the first time to the micrometer-sized FO substrate, to design end reflection-type FO-SPR sensors with periodic arrays of Au triangularly-shaped nanostructures on the Au mirror FO tip distal end. The nanopatterned FO-SPR sensor tips were afterwards subjected to refractometric measurements in a sucrose dilution series and subsequently compared with their non-patterned counterparts. It was observed that the spectral dips of the nanopatterned FO-SPR sensor tips were shifted towards longer wavelengths after CLT patterning. Moreover, the sensor sensitivity was improved with up to 25% compared to the conventional non-patterned FO-SPR devices. The obtained results represent important steps in the development of a new generation of FO-SPR sensors with improved performance, which can ultimately be used in various applications, ranging from food analysis and environmental monitoring, to health control and medical diagnosis.
RESUMO
Abstract: Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery (Apium graveolens) is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR) is followed by a high-resolution melting analysis (HRM). In order to provide a DNA-based, rapid and simple detection method suitable for one-step quantification, a fiber optic PCR melting assay (FO-PCR-MA) was developed to determine different concentrations of celery DNA (1 pM-0.1 fM). The presented method is based on the hybridization and melting of DNA-coated gold nanoparticles to the FO sensor surface in the presence of the target gene (mannitol dehydrogenase, Mtd). The concept was not only able to reveal the presence of celery DNA, but also allowed for the cycle-to-cycle quantification of the target sequence through melting analysis. Furthermore, the developed bioassay was benchmarked against qPCR followed by HRM, showing excellent agreement (R² = 0.96). In conclusion, this innovative and sensitive diagnostic test could further improve food quality control and thus have a large impact on allergen induced healthcare problems.
RESUMO
The detection of single molecules in magnetic microbead microwell array formats revolutionized the development of digital bioassays. However, retrieval of individual magnetic beads from these arrays has not been realized until now despite having great potential for studying captured targets at the individual level. In this paper, optical tweezers were implemented on a digital microfluidic platform for accurate manipulation of single magnetic beads seeded in a microwell array. Successful optical trapping of magnetic beads was found to be dependent on Brownian motion of the beads, suggesting a 99% chance of trapping a vibrating bead. A tailor-made experimental design was used to screen the effect of bead type, ionic buffer strength, surfactant type, and concentration on the Brownian activity of beads in microwells. With the optimal conditions, the manipulation of magnetic beads was demonstrated by their trapping, retrieving, transporting, and repositioning to a desired microwell on the array. The presented platform combines the strengths of digital microfluidics, digital bioassays, and optical tweezers, resulting in a powerful dynamic microwell array system for single molecule and single cell studies.