Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
New Phytol ; 241(2): 747-763, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964509

RESUMO

Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.


Assuntos
Arabidopsis , Fucose , Fucose/metabolismo , Guanosina Difosfato Fucose/metabolismo , Boro/metabolismo , Arabidopsis/metabolismo , Polissacarídeos/metabolismo
2.
EMBO J ; 34(1): 55-66, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25398910

RESUMO

Recognition of extracellular peptides by plasma membrane-localized receptor proteins is commonly used in signal transduction. In plants, very little is known about how extracellular peptides are processed and activated in order to allow recognition by receptors. Here, we show that induction of cell death in planta by a secreted plant protein GRIM REAPER (GRI) is dependent on the activity of the type II metacaspase METACASPASE-9. GRI is cleaved by METACASPASE-9 in vitro resulting in the release of an 11 amino acid peptide. This peptide bound in vivo to the extracellular domain of the plasma membrane-localized, atypical leucine-rich repeat receptor-like kinase POLLEN-SPECIFIC RECEPTOR-LIKE KINASE 5 (PRK5) and was sufficient to induce oxidative stress/ROS-dependent cell death. This shows a signaling pathway in plants from processing and activation of an extracellular protein to recognition by its receptor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Caspases/metabolismo , Estresse Oxidativo/fisiologia , Peptídeos/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Caspases/genética , Morte Celular/fisiologia , Membrana Celular/genética , Membrana Celular/metabolismo , Peptídeos/genética , Ligação Proteica/fisiologia , Proteínas Quinases/genética , Estrutura Terciária de Proteína
3.
PLoS Genet ; 10(2): e1004112, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24550736

RESUMO

Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS). Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1. To identify a core set of cell death regulated genes, RCD1-regulated genes were clustered together with other array experiments from plants undergoing cell death or treated with various pathogens, plant hormones or other chemicals. Subsequently, selected rcd1 double mutants were constructed to further define the genetic requirements for the execution of apoplastic ROS induced cell death. Through the genetic analysis we identified WRKY70 and SGT1b as cell death regulators functioning downstream of RCD1 and show that quantitative rather than qualitative differences in gene expression related to cell death appeared to better explain the outcome. Allocation of plant energy to defenses diverts resources from growth. Recently, a plant response termed stress-induced morphogenic response (SIMR) was proposed to regulate the balance between defense and growth. Using a rcd1 double mutant collection we show that SIMR is mostly independent of the classical plant defense signaling pathways and that the redox balance is involved in development of SIMR.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Morte Celular/genética , Proteínas Nucleares/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Proteínas Nucleares/metabolismo , Estresse Fisiológico/genética
4.
Nature ; 452(7186): 487-91, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18305484

RESUMO

Stomatal pores, formed by two surrounding guard cells in the epidermis of plant leaves, allow influx of atmospheric carbon dioxide in exchange for transpirational water loss. Stomata also restrict the entry of ozone--an important air pollutant that has an increasingly negative impact on crop yields, and thus global carbon fixation and climate change. The aperture of stomatal pores is regulated by the transport of osmotically active ions and metabolites across guard cell membranes. Despite the vital role of guard cells in controlling plant water loss, ozone sensitivity and CO2 supply, the genes encoding some of the main regulators of stomatal movements remain unknown. It has been proposed that guard cell anion channels function as important regulators of stomatal closure and are essential in mediating stomatal responses to physiological and stress stimuli. However, the genes encoding membrane proteins that mediate guard cell anion efflux have not yet been identified. Here we report the mapping and characterization of an ozone-sensitive Arabidopsis thaliana mutant, slac1. We show that SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1) is preferentially expressed in guard cells and encodes a distant homologue of fungal and bacterial dicarboxylate/malic acid transport proteins. The plasma membrane protein SLAC1 is essential for stomatal closure in response to CO2, abscisic acid, ozone, light/dark transitions, humidity change, calcium ions, hydrogen peroxide and nitric oxide. Mutations in SLAC1 impair slow (S-type) anion channel currents that are activated by cytosolic Ca2+ and abscisic acid, but do not affect rapid (R-type) anion channel currents or Ca2+ channel function. A low homology of SLAC1 to bacterial and fungal organic acid transport proteins, and the permeability of S-type anion channels to malate suggest a vital role for SLAC1 in the function of S-type anion channels.


Assuntos
Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Estômatos de Plantas/metabolismo , Transdução de Sinais , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Cálcio/farmacologia , Escuridão , Meio Ambiente , Umidade , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/efeitos da radiação , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/efeitos da radiação , Luz , Proteínas de Membrana/genética , Óxido Nítrico/metabolismo , Cebolas/metabolismo , Oócitos , Ozônio/metabolismo , Ozônio/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Nicotiana/citologia , Nicotiana/metabolismo , Água/metabolismo , Xenopus
5.
New Phytol ; 200(2): 511-522, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23815789

RESUMO

Ethylene Response Factors (ERFs) are a large family of transcription factors that mediate responses to ethylene. Ethylene affects many aspects of wood development and is involved in tension wood formation. Thus ERFs could be key players connecting ethylene action to wood development. We identified 170 gene models encoding ERFs in the Populus trichocarpa genome. The transcriptional responses of ERF genes to ethylene treatments were determined in stem tissues of hybrid aspen (Populus tremula × tremuloides) by qPCR. Selected ethylene-responsive ERFs were overexpressed in wood-forming tissues and characterized for growth and wood chemotypes by FT-IR. Fifty ERFs in Populus showed more than five-fold increased transcript accumulation in response to ethylene treatments. Twenty-six ERFs were selected for further analyses. A majority of these were induced during tension wood formation. Overexpression of ERFs 18, 21, 30, 85 and 139 in wood-forming tissues of hybrid aspen modified the wood chemotype. Moreover, overexpression of ERF139 caused a dwarf-phenotype with altered wood development, and overexpression of ERF18, 34 and 35 slightly increased stem diameter. We identified ethylene-induced ERFs that respond to tension wood formation, and modify wood formation when overexpressed. This provides support for their role in ethylene-mediated regulation of wood development.


Assuntos
Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Plantas/genética , Populus/genética , Sequência de Aminoácidos , Aminoácidos Cíclicos/farmacologia , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Plantas/metabolismo , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Populus/anatomia & histologia , Populus/crescimento & desenvolvimento , Populus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Madeira/anatomia & histologia , Madeira/genética , Madeira/crescimento & desenvolvimento , Madeira/metabolismo , Xilema/anatomia & histologia , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
6.
Biochem J ; 442(3): 573-81, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22150398

RESUMO

Transcriptional regulation of gene expression is one major determinant of developmental control and stress adaptation in virtually all living organisms. In recent years numerous transcription factors controlling various aspects of plant life have been identified. The activity of transcription factors needs to be regulated to prevent unspecific, prolonged or inappropriate responses. The transcription factor DREB2A (DEHYDRATION-RESPONSIVE ELEMENT BINDING 2A) has been identified as one of the main regulators of drought and heat responses, and it is regulated through protein stability. In the present paper we describe evidence that the interaction with RCD1 (RADICAL-INDUCED CELL DEATH 1) contributes to the control of DREB2A under a range of conditions. The interaction is mediated by a novel protein motif in DREB2A and a splice variant of DREB2A which lacks the interaction domain accumulates during heat stress and senescence. In addition RCD1 is rapidly degraded during heat stress, thus our results suggest that removal of RCD1 protein or the loss of the interaction domain in DREB2A appears to be required for proper DREB2A function under stress conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Senescência Celular , Dados de Sequência Molecular , Isoformas de Proteínas/metabolismo , Estresse Fisiológico
7.
Nat Genet ; 49(6): 904-912, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28481341

RESUMO

Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.


Assuntos
Betula/genética , Genoma de Planta , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Adaptação Biológica/genética , Betula/fisiologia , Finlândia , Duplicação Gênica , Genética Populacional , Filogenia , Densidade Demográfica
9.
Genome Biol ; 6(12): R101, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16356264

RESUMO

BACKGROUND: Plants growing in their natural habitat represent a valuable resource for elucidating mechanisms of acclimation to environmental constraints. Populus euphratica is a salt-tolerant tree species growing in saline semi-arid areas. To identify genes involved in abiotic stress responses under natural conditions we constructed several normalized and subtracted cDNA libraries from control, stress-exposed and desert-grown P. euphratica trees. In addition, we identified several metabolites in desert-grown P. euphratica trees. RESULTS: About 14,000 expressed sequence tag (EST) sequences were obtained with a good representation of genes putatively involved in resistance and tolerance to salt and other abiotic stresses. A P. euphratica DNA microarray with a uni-gene set of ESTs representing approximately 6,340 different genes was constructed. The microarray was used to study gene expression in adult P. euphratica trees growing in the desert canyon of Ein Avdat in Israel. In parallel, 22 selected metabolites were profiled in the same trees. CONCLUSION: Of the obtained ESTs, 98% were found in the sequenced P. trichocarpa genome and 74% in other Populus EST collections. This implies that the P. euphratica genome does not contain different genes per se, but that regulation of gene expression might be different and that P. euphratica expresses a different set of genes that contribute to adaptation to saline growth conditions. Also, all of the five measured amino acids show increased levels in trees growing in the more saline soil.


Assuntos
Clima Desértico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Populus/genética , Populus/metabolismo , Desastres , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genes de Plantas/genética , Genoma de Planta/genética , Israel , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/química , Populus/classificação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA