Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Basic Res Cardiol ; 116(1): 17, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721106

RESUMO

The monocyte ß2-integrin Mac-1 is crucial for leukocyte-endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the αM I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry. Homology modelling and docking studies defined distinct interaction sites which were verified by mutagenesis. Intravital microscopy showed reduced leukocyte-endothelium adhesion in mice treated with this DARPin. Using mouse models of sepsis, myocarditis and ischaemia/reperfusion injury, we demonstrate therapeutic anti-inflammatory effects. Finally, the activated Mac-1-specific DARPin is established as a tool to detect monocyte activation in patients receiving extra-corporeal membrane oxygenation, as well as suffering from sepsis and ST-elevation myocardial infarction. The activated Mac-1-specific DARPin F7 binds preferentially to activated monocytes, detects inflammation in critically ill patients, and inhibits monocyte and neutrophil function as an efficient new anti-inflammatory agent.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas de Repetição de Anquirina Projetadas/farmacologia , Antígeno de Macrófago 1/metabolismo , Monócitos/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Miocardite/tratamento farmacológico , Miocárdio/metabolismo , Sepse/tratamento farmacológico , Animais , Técnicas de Visualização da Superfície Celular , Células Cultivadas , Proteínas de Repetição de Anquirina Projetadas/genética , Modelos Animais de Doenças , Epitopos , Oxigenação por Membrana Extracorpórea , Humanos , Antígeno de Macrófago 1/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Simulação de Acoplamento Molecular , Monócitos/imunologia , Monócitos/metabolismo , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocardite/imunologia , Miocardite/metabolismo , Miocardite/fisiopatologia , Miocárdio/imunologia , Miocárdio/patologia , Estudo de Prova de Conceito , Ligação Proteica , Infarto do Miocárdio com Supradesnível do Segmento ST/imunologia , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Sepse/imunologia , Sepse/metabolismo , Sepse/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos
2.
Anal Bioanal Chem ; 409(11): 2767-2776, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28229174

RESUMO

We studied the interaction of the specific DNA aptamer sgc8c immobilized at the AFM tip with its corresponding receptor, the protein tyrosine kinase-7 (PTK7) embedded in the membrane of acute lymphoblastic leukemia (ALL) cells (Jurkat T-cells). Performing single molecule force spectroscopy (SMFS) experiments, we showed that the aptamer sgc8c bound with high probability (38.3 ± 7.48%) and high specificity to PTK7, as demonstrated by receptor blocking experiments and through comparison with the binding behavior of a nonspecific aptamer. The determined kinetic off-rate (koff = 5.16 s-1) indicates low dissociation of the sgc8c-PTK7 complex. In addition to the pulling force experiments, simultaneous topography and recognition imaging (TREC) experiments using AFM tips functionalized with sgc8c aptamers were realized on the outer regions surface of surface-immobilized Jurkat cells for the first time. This allowed determination of the distribution of PTK7 without any labeling and at near physiological conditions. As a result, we could show a homogeneous distribution of PTK7 molecules on the outer regions of ALL cells with a surface density of 325 ± 12 PTK7 receptors (or small receptor clusters) per µm2. Graphical Abstract The specific interaction of the DNA aptamer sgc8c and protein tyrosine kinase-7 (PTK7) on acute lymphoblastic leukemia (ALL) cells was characterized. AFM based single molecule force spectroscopy (SMFS) yielded a kinetic off-rate of 5.16 s-1 of the complex. Simultaneous topography and recognition imaging (TREC) revealed a PTK7 density of 325 ± 12 molecules or clusters per µm2 in the cell membrane.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Moléculas de Adesão Celular/metabolismo , Microscopia de Força Atômica/métodos , Imagem Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Receptores Proteína Tirosina Quinases/metabolismo , Linfócitos T/metabolismo , Sítios de Ligação , Técnicas Biossensoriais/métodos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Humanos , Células Jurkat , Ligação Proteica , Linfócitos T/ultraestrutura
3.
Langmuir ; 31(34): 9261-5, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26267815

RESUMO

Diblock copolymer micelle nanolithography (BCML) is a versatile and efficient method to cover large surface areas with hexagonally ordered arrays of metal nanoparticles, in which the nanoparticles are equally spaced. However, this method falls short of providing a controlled allocation of such regular nanoparticle arrays with specific spacing into micropatterns. We present here a quick and high-throughput method to generate quasi-hexagonal nanoparticle structures with well-defined interparticle spacing on segments of nanotopographic Si substrates. The topographic height of these segments plays a dominant role in dictating the spacing between the gold nanoparticles, as the nanoparticle arrangement is controlled by immersion forces and by their self-assembly within the segments. Our novel strategy of employing a single-step BCML routine is a highly promising method for the fabrication of regular gold nanopatterns in micropatterns for a wide range of applications.

4.
Oncogene ; 39(19): 3893-3909, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203164

RESUMO

The transcription factor TCF7L2 is indispensable for intestinal tissue homeostasis where it transmits mitogenic Wnt/ß-Catenin signals in stem and progenitor cells, from which intestinal tumors arise. Yet, TCF7L2 belongs to the most frequently mutated genes in colorectal cancer (CRC), and tumor-suppressive functions of TCF7L2 were proposed. This apparent paradox warrants to clarify the role of TCF7L2 in colorectal carcinogenesis. Here, we investigated TCF7L2 dependence/independence of CRC cells and the cellular and molecular consequences of TCF7L2 loss-of-function. By genome editing we achieved complete TCF7L2 inactivation in several CRC cell lines without loss of viability, showing that CRC cells have widely lost the strict requirement for TCF7L2. TCF7L2 deficiency impaired G1/S progression, reminiscent of the physiological role of TCF7L2. In addition, TCF7L2-negative cells exhibited morphological changes, enhanced migration, invasion, and collagen adhesion, albeit the severity of the phenotypic alterations manifested in a cell-line-specific fashion. To provide a molecular framework for the observed cellular changes, we performed global transcriptome profiling and identified gene-regulatory networks in which TCF7L2 positively regulates the proto-oncogene MYC, while repressing the cell cycle inhibitors CDKN2C/CDKN2D. Consistent with its function in curbing cell motility and invasion, TCF7L2 directly suppresses the pro-metastatic transcription factor RUNX2 and impinges on the expression of cell adhesion molecules. Altogether, we conclude that the proliferation-stimulating activity of TCF7L2 persists in CRC cells. In addition, TCF7L2 acts as invasion suppressor. Despite its negative impact on cell cycle progression, TCF7L2 loss-of-function may thereby increase malignancy, which could explain why TCF7L2 is mutated in a sizeable fraction of colorectal tumors.


Assuntos
Proliferação de Células/genética , Neoplasias Colorretais/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Carcinogênese/genética , Movimento Celular/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proto-Oncogene Mas , Via de Sinalização Wnt/genética , beta Catenina/genética
5.
Cell Stress Chaperones ; 23(4): 673-683, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29404895

RESUMO

Hsp70-1A-the major stress-inducible member of the HSP70 chaperone family-is being implicated in cancer diseases with the development of resistances to standard therapies. In normal cells, the protein is purely cytosolic, but in a growing number of tumor cells, a significant fraction can be identified on to the cell surface. The anchoring mechanism is still under debate, as Hsp70-1A lacks conventional signaling sequences for translocation from the cytosol to exoplasmic leaflet of the plasma membrane and common membrane binding domains. Recent reports propose a lipid-mediated anchoring mechanism based on a specific interaction with charged, saturated lipids such as dipalmitoyl phosphatidylserine (DPPS). Here, we prepared planar supported lipid bilayers (SLBs) to visualize the association of Hsp70-1A directly and on the single molecule level by atomic force microscopy (AFM). The single molecule sensitivity of our approach allowed us to explore the low concentration range of 0.05 to 1.0 µg/ml of Hsp70-1A which was not studied before. We compared the binding of the protein to bilayers with 20% DPPS lipid content both in the absence and presence of cholesterol. Hsp70-1A inserted exclusively into DPPS domains and assembled in clusters with increasing protein density. A critical density was reached for incubation with 0.5 µg/ml (7 nM); at higher concentrations, membrane defects were observed that originated from cluster centers. In the presence of cholesterol, this critical concentration leads to the formation of membrane blebs, which burst at higher concentrations supporting a previously proposed non-classical pathway for the export of Hsp70-1A by tumor cells. In the discussion of our data, we attempt to link the lipid-mediated plasma membrane localization of Hsp70-1A to its potential involvement in the development of resistances to radiation and chemotherapy based on our own findings and the current literature.


Assuntos
Extensões da Superfície Celular/metabolismo , Colesterol/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Microscopia de Força Atômica , Fosfatidilserinas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo
6.
Adv Mater ; 28(9): 1799-802, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26685922

RESUMO

Rapid and reversible photoswitching of cell adhesion is achieved by c(RGDfK)-azobenzenes embedded in a poly(ethylene glycol) background on surfaces. The light-induced cis-trans-isomerization of the azobenzene enables switching of cell adhesion on the surface. Reversibility of switching over several consecutive switching cycles is demonstrated by single-cell force spectroscopy.


Assuntos
Integrinas/metabolismo , Luz , Compostos Azo/química , Compostos Azo/metabolismo , Compostos Azo/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Peptídeos Cíclicos/química , Análise de Célula Única , Propriedades de Superfície
7.
ACS Appl Mater Interfaces ; 8(24): 14980-5, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27258400

RESUMO

Aerographite (AG) is a novel carbon-based material that exists as a self-supportive 3D network of interconnected hollow microtubules. It can be synthesized in a variety of architectures tailored by the growth conditions. This flexibility in creating structures presents interesting bioengineering possibilities such as the generation of an artificial extracellular matrix. Here we have explored the feasibility and potential of AG as a scaffold for 3D cell growth employing cyclic RGD (cRGD) peptides coupled to poly(ethylene glycol) (PEG) conjugated phospholipids for surface functionalization to promote specific adhesion of fibroblast cells. Successful growth and invasion of the bulk material was followed over a period of 4 days.


Assuntos
Grafite/química , Engenharia Tecidual , Alicerces Teciduais/química , Adesão Celular , Células Cultivadas , Fosfolipídeos/química , Polietilenoglicóis
8.
Future Sci OA ; 1(3): FSO17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28031892

RESUMO

BACKGROUND: The potential use of carbon nanotubes (CNTs) in gene therapy as delivery systems for nucleic acids has been recently recognized. Here, we describe that metallic versus semiconducting single-wall CNTs can produce significant differences in transfection rate and cellular distribution of siRNA in murine PAM212 keratinocytes. RESULTS/METHODOLOGY: The results of cell interaction studies, coupled with supportive computational simulations and ultrastructural studies revealed that the use of metallic single wall CNTs resulted in siRNA delivery into both the cytoplasm and nucleus of keratinocytes, whereas semiconducting CNTs resulted in delivery only to the cytoplasm. CONCLUSION: Using enriched fractions of metallic or semiconducting CNTs for siRNA complex preparation may provide specific subcellular targeting advantages.

9.
Expert Opin Drug Deliv ; 11(8): 1237-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24809228

RESUMO

INTRODUCTION: The therapeutic effects of medicinal drugs not only depend on their properties, but also on effective transport to the target receptor. Here we highlight recent developments in this discipline and show applications of atomic force microscopy (AFM) that enable us to track the effects of drugs and the effectiveness of nanoparticle delivery at the single molecule level. AREAS COVERED: Physiological AFM imaging enables visualization of topographical changes to cells as a result of drug exposure and allows observation of cellular responses that yield morphological changes. When we upgrade the regular measuring tip to a molecular biosensor, it enables investigation of functional changes at the molecular level via single molecule force spectroscopy. EXPERT OPINION: Biosensing AFM techniques have generated powerful tools to monitor drug delivery in (living) cells. While technical developments in actual AFM methods have simplified measurements at relevant physiological conditions, understanding both the biological and technical background is still a crucial factor. However, due to its potential impact, we expect the number of application-based biosensing AFM techniques to further increase in the near future.


Assuntos
Técnicas Biossensoriais , Sistemas de Liberação de Medicamentos/métodos , Monitoramento de Medicamentos/métodos , Microscopia de Força Atômica , Animais , Humanos , Nanopartículas , Nanotecnologia
10.
Int J Nanomedicine ; 7: 403-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22334774

RESUMO

BACKGROUND: Carbon nanotubes (CNTs) are novel materials with considerable potential in many areas related to nanomedicine. However, a major limitation in the development of CNT-based therapeutic nanomaterials is a lack of reliable and reproducible data describing their chemical and structural composition. Knowledge of properties including purity, structural quality, dispersion state, and concentration are essential before CNTs see widespread use in in vitro and in vivo experiments. In this work, we describe the characterization of several commercially available and two in-house-produced CNT samples and discuss the physicochemical profiles that will support their use in nanomedicine. METHODS: Eighteen single-walled and multi-walled CNT raw materials were characterized using established analytical techniques. Solid CNT powders were analyzed for purity and structural quality using thermogravimetric analysis and Raman spectroscopy. Extinction coefficients for each CNT sample were determined by ultraviolet-visible near infrared absorption spectroscopy. Standard curves for each CNT sample were generated in the 0-5 µg/mL concentration range for dispersions prepared in 1,2-dichlorobenzene. RESULTS: Raman spectroscopy and thermogravimetric analysis results demonstrated that CNT purity and overall quality differed substantially between samples and manufacturer sources, and were not always in agreement with purity levels claimed by suppliers. Absorbance values for individual dispersions were found to have significant variation between individual single-walled CNTs and multi-walled CNTs and sources supplying the same type of CNT. Significant differences (P < 0.01) in extinction coefficients were observed between and within single-walled CNTs (24.9-53.1 mL·cm(-1)·mg(-1)) and multi-walled CNTs (49.0-68.3 mL·cm(-1)·mg(-1)). The results described here suggest a considerable role for impurities and structural inhomogeneities within individual CNT preparations and the resulting spectroscopic properties of their dispersions. CONCLUSION: Raw CNT materials require thorough analytical workup before they can be used as nanoexcipients. This applies especially to the determination of CNT purity, structure, and concentration. The results presented here clearly demonstrate that extinction coefficients must be determined for individual CNT preparations prior to their use.


Assuntos
Nanotubos de Carbono/química , Análise de Variância , Clorobenzenos/química , Excipientes/química , Nanomedicina , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho , Análise Espectral Raman , Termogravimetria
11.
J Biomed Nanotechnol ; 7(6): 830-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22416583

RESUMO

Carbon nanotubes possess interesting physicochemical properties which make them potentially usable in medicine. Single-walled carbon nanotubes and multi-walled carbon nanotubes, for example, may carry and deliver anticancer drugs, such as cisplatin. Magnetic nanoparticles, like iron filled MWCNT, can be used in hyperthermia therapy. However, their hydrophobic character is a major difficulty, as preparation of stable dispersions of carbon nanotubes in biological buffers is an essential step towards biomedical applications. Recently, a novel treatment using the glycolipid, Galactosyl-beta1-sphingosine (psychosine), was employed to make stable suspensions of psychosine-functionalized carbon nanotubes in biological buffers. In this paper, the interactions of psychosine-functionalized carbon nanotubes with a part of the human immune system, complement, is presented. To investigate if human serum complement proteins can interact with psychosine-functionalized carbon nanotubes, complement consumption (depletion) assays were conducted. Moreover, direct protein binding studies, to analyze the interaction of plasma proteins with the psychosine-functionalized carbon nanotubes, using affinity chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis techniques, were applied. The psychosine-functionalized carbon nanotubes activate human complement via the classical pathway. Interestingly, as the hydrophilic part of the glycolipid may bind to ficolins, the lectin pathway could also be involved. Binding of human plasma proteins is very selective as only very few proteins adsorb to the psychosine-functionalized carbon nanotube surface, when placed in contact with human plasma. Bovine serum albumin-coated carbon nanotubes were used as a standard to find the differences in complement activation and protein adsorption patterns, caused by various non-covalent coatings of carbon nanotubes.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Proteínas do Sistema Complemento/metabolismo , Nanotubos de Carbono/química , Psicosina/farmacologia , Adsorção/efeitos dos fármacos , Animais , Proteínas Sanguíneas/metabolismo , Bovinos , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Massas , Microscopia de Força Atômica , Ligação Proteica/efeitos dos fármacos , Psicosina/química , Soroalbumina Bovina/metabolismo
12.
ACS Nano ; 4(5): 2615-26, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20380453

RESUMO

Aqueous dispersions of functionalized carbon nanotubes (CNTs) are now widely used for biomedical applications. Their stability in different in vitro or in vivo environments, however, depends on a wide range of parameters, such as pH and salt concentrations of the surrounding medium, and length, aspect ratio, surface charge, and functionalization of the applied CNTs. Although many of these aspects have been investigated separately, no study is available in the literature to date, which examines these parameters simultaneously. Therefore, we have chosen five types of carbon nanotubes, varying in their dimensions and surface properties, for a multidimensional analysis of dispersion stability in salt solutions of differing pH and concentrations. Furthermore, we examine the dispersion stability of oxidized CNTs in biological fluids, such as cellular growth media and human plasma, and their toxicity toward cancer cells. To enhance dispersibility and biocompatibility, the influence of different functionalization schemes is studied. The results of our investigations indicate that both CNT dimensions and surface functionalization have a significant influence on their dispersion and in vitro behavior. In particular, factors such as a short aspect ratio, presence of oxidation debris and serum proteins, low salt concentration, and an appropriate pH are shown to improve the dispersion stability. Furthermore, covalent surface functionalization with amine-terminated polyethylene glycol (PEG) is demonstrated to stabilize CNT dispersions in various media and to reduce deleterious effects on cultured cells. These findings provide crucial data for the development of biofunctionalization protocols, for example, for future cancer theranostics, and optimizing the stability of functionalized CNTs in varied biological environments.


Assuntos
Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacocinética , Materiais Biocompatíveis/toxicidade , Transporte Biológico , Soluções Tampão , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Luz , Microscopia de Força Atômica , Oxirredução , Tamanho da Partícula , Plasma/química , Polietilenoglicóis/química , RNA/química , Sais/química , Espalhamento de Radiação
13.
Ultramicroscopy ; 109(8): 1056-60, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19362420

RESUMO

Higher harmonic contributions in the movement of an oscillating atomic force microscopy (AFM) cantilever are generated by nonlinear tip-sample interactions, yielding additional information on structure and physical properties such as sample stiffness. Higher harmonic amplitudes are strongly enhanced in liquid compared to the operation in air, and were previously reported to result in better structural resolution in highly organized lattices of proteins in bacterial S-layers and viral capsids [J. Preiner, J. Tang, V. Pastushenko, P. Hinterdorfer, Phys. Rev. Lett. 99 (2007) 046102]. We compared first and second harmonics AFM imaging of live and fixed human lung epithelial cells, and microvascular endothelial cells from mouse myocardium (MyEnd). Phase-distance cycles revealed that the second harmonic phase is 8 times more sensitive than the first harmonic phase with respect to variations in the distance between cantilever and sample surface. Frequency spectra were acquired at different positions on living and fixed cells with second harmonic amplitude values correlating with the sample stiffness. We conclude that variations in sample stiffness and corresponding changes in the cantilever-sample distance, latter effect caused by the finite feedback response, result in second harmonic images with improved contrast and information that is not attainable in the fundamental frequency of an oscillating cantilever.


Assuntos
Células Eucarióticas/ultraestrutura , Microscopia de Força Atômica/métodos , Animais , Elasticidade , Células Endoteliais/ultraestrutura , Células Epiteliais/ultraestrutura , Humanos , Pulmão/citologia , Camundongos , Miocárdio/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA