Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Geochem Health ; 42(2): 483-497, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31342217

RESUMO

Aerobic methanotrophs in paddies serve as methane (CH4) filters and thereby reduce CH4 emissions. Amending soil with waste products can mitigate CH4 emissions in crops, but little is known about the impacts of amendments with steel slag and biochar on the populations and activities of aerobic methanotrophs in rice cropland. We used real-time quantitative PCR detecting system and high-throughput sequencing to determine the effects of slag and biochar amendments on CH4 emission, abundance, and community structure of methanotrophs, and the relationships between soil properties and the abundance and community composition of methanotrophs during the rice growing season in both early and late paddies. Soil salinity and pH were significantly higher for an amendment with both slag and biochar than the control in both the early and late paddies, and pH was significantly higher for a slag amendment in the late paddy. Cumulative CH4 emission was lower for the slag and slag + biochar amendments than the control in early paddy by-34.1%. Methanotrophic abundance was three- and sixfold higher for the slag + biochar amendment than the control in the early and late paddies (p < 0.05), respectively. The abundance of different groups of methanotrophs varied among the treatments. The relative abundance of Methylosarcina was higher for the slag amendment than the control, and the relative abundance of Methylomonas was lower for biochar, and slag + biochar amendments than the control. The relative abundance of Methylocystis was higher for the slag and slag + biochar amendments than the control in the early paddy, and the relative abundance of Methylocystis was higher for the slag, biochar, and slag + biochar amendments in the late paddy. Univariate and multivariate analyses indicated that the higher abundance of methanotrophic bacteria for the slag and slag + biochar amendments was correlated with soil pH, salinity, soil organic carbon, and C/N ratio, and the relative abundances of Methylocystis, Methylomonas, and Methylosarcina were associated with the effective mitigation of CH4 emission in the paddies. A discriminant general analysis indicated that the total population of methanotrophs was larger for the slag + biochar amendment than the control, and that this effect was only weakly correlated with changes in the soil properties, demonstrating that this effect on the size and species composition of methanotrophic soil populations was mostly associated with a direct effect of the slag + biochar amendment.


Assuntos
Poluentes Atmosféricos/análise , Carvão Vegetal/química , Metano/análise , Microbiologia do Solo , Resíduos , Poluentes Atmosféricos/metabolismo , Recuperação e Remediação Ambiental , Metalurgia , Metano/metabolismo , Oryza/crescimento & desenvolvimento , Estações do Ano , Solo/química
2.
Sci Total Environ ; 824: 153783, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35176355

RESUMO

Incorporating amendments of industrial waste such as biochar and steel slag in cropland has been used to enhance the storage of soil organic carbon (SOC) while sustaining crop production. Short-term laboratory and field studies have identified important influences of biochar on active SOC fractions associated with soil microbial activity in paddy soils, but the long-term effects remain poorly understood. To address these knowledge gaps, we examined the effects of slag, biochar, and slag+biochar treatments on total SOC concentration, active SOC fractions and soil microbial communities in a paddy field two years after incorporation. Across both two seasons, the addition of slag, biochar, slag+biochar increased soil salinity by 26-80%, 1.3-37% and 42-79%, and also increased soil pH by 0.8-5.7%, 2.1-2.4% and 4.0-6.3%, respectively, relative to the control. SOC concentration was higher in the slag, biochar, and slag+biochar treatments across both rice seasons by 4.3-5%, 0.5-17% and 4.3-7%, respectively. Soil C-pool activity and C-pool management indices in the late paddy season were significantly lower in the slag+biochar treatment than the control by 26.3 and 21.3%, respectively, indicating that the amendments contributed to the stability of SOC. The C concentrations of the biochar and slag amendments affected bacterial abundance more than fungal abundance and affected C cycling. Our study suggests that combined slag and biochar amendments may increase bacterial abundance that may maintain SOC storage and reduce the abundances of potential SOC decomposers in key functional genera, indicating strong coupling relationships with changes of soil properties such as salinity, pH, and SOC concentration. These outcomes due to the amendments (e.g. slag+biochar) may increase microbial C-use efficiency and support the stability of active SOC fractions, with opportunities for long-term C sequestration.


Assuntos
Oryza , Solo , Carbono , Carvão Vegetal/química , China , Solo/química
3.
Huan Jing Ke Xue ; 41(1): 489-498, 2020 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-31854952

RESUMO

We investigate whether slag and biochar applications have subsequent effects on greenhouse gas emissions from paddy fields by applying biochar (B), slag (S), and a biochar-slag mix (BS) to paddy fields in the Fuzhou Plain, China. Applications of the three treatments along with a control (CK) of no amendment were made in 2015 before early and late rice seedlings were transplanted. Two years later in 2017, the CO2, CH4, and N2O emissions in the different treatments and control were measured in the early and late rice growing seasons. The results showed that, in the rice growing season, the averaged CO2 emission in the control, biochar, slag, and mixed applications were (1723.66±194.56), (1245.52±155.05), (1140.29±79.68), and (1055.83±62.13) mg·(m2·h)-1, respectively. The CO2 emissions from the three treatments were significantly lower than the control group (P<0.05), and the reduction ratios of each treatment to the control were 27.74%, 33.84%, and 38.75%, respectively. The averaged CH4 emissions in the control, biochar, slag, and mixed applications were (0.45±0.03), (0.40±0.05), (0.36±0.10), and (0.25±0.04) mg·(m2·h)-1, respectively, which were lower, but not significantly so (P>0.05), than the control. The ratios of CH4 emissions from each treatment to the control were 11.11%, 20.00%, and 44.44%, respectively. The averaged N2O emissions from the control, biochar, slag, and mixed applications were (62.47±27.00), (115.09±30.94), (79.75±24.98), and (112.68±23.59) µg·(m2·h)-1, respectively. In comparison to the control, the biochar, slag, and mixed treatments increased the N2O emissions by 84.23%, 27.66%, and 80.37%, respectively. The global comprehensive warming potential indicated that the application treatments increased the comprehensive warming potential of the early and late rice paddy ecosystems; after 2 years of applying slag and biochar treatments, their effect on the emission reductions were not obvious.

4.
Sci Total Environ ; 740: 140403, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927559

RESUMO

Waste amendments, such as steel slag and biochar, have been reported as a strategy for improving soil fertility, crop productivity, and carbon (C) sequestration in agricultural lands. However, information regarding the subsequent effects of steel slag and biochar on C cycling and the underlying microbial mechanisms in paddy soils remains limited. Hence, this study aimed to examine the effect of these waste amendments (applied in 2015-2017) on total soil CO2 emissions, total and active soil organic C (SOC) contents, and microbial communities in the early and late seasons in a subtropical paddy field. The results showed that despite the exogenous C input from these waste amendments (steel slag, biochar and slag + biochar), they significantly (P < 0.05) decreased total CO2 emissions (e.g., by 41.9-59.6% at the early season), compared to the control soil. These amendments also significantly (P < 0.001) increased soil salinity and pH. The increased soil pH had a negative effect (r = -0.37, P < 0.05) on microbial biomass C (MBC). The biochar and slag + biochar treatments (cf. control) significantly (P < 0.001) increased SOC contents in the both seasons. The amendments altered the soil microbial community structure that associated with soil C cycling: (1) all three amendments increased the relative abundance of Agromyces and Streptomyces, which was associated with higher soil pH (cf. control); and (2) biochar and slag + biochar treatments caused a higher relative abundance of Sphingomonas, which was supported by high SOC contents under those amendments. Overall, this study demonstrated that the steel slag and biochar amendments altered microbial community composition due to changes in key soil properties, such as salinity, pH and SOC contents, with implications for increasing soil C stocks while mitigating CO2 emissions in the paddy field.


Assuntos
Oryza , Solo , Dióxido de Carbono/análise , Carvão Vegetal , Microbiologia do Solo , Aço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA