RESUMO
The migration of epidermal stem cells (EpSCs) is critical for wound re-epithelization and wound healing. Recently, growth/differentiation factor-5 (GDF-5) was discovered to have multiple biological effects on wound healing; however, its role in EpSCs remains unclear. In this work, recombinant mouse GDF-5 (rmGDF-5) was found via live imaging in vitro to facilitate the migration of mouse EpSCs in a wound-scratch model. Western blot and real-time PCR assays demonstrated that the expression levels of RhoA and matrix metalloproteinase-9 (MMP9) were correlated with rmGDF-5 concentration. Furthermore, we found that rmGDF-5 stimulated mouse EpSC migration in vitro by regulating MMP9 expression at the mRNA and protein levels through the RhoA signalling pathway. Moreover, in a deep partial-thickness scald mouse model in vivo, GDF-5 was confirmed to promote EpSC migration and MMP9 expression via RhoA, as evidenced by the tracking of cells labelled with 5-bromo-2-deoxyuridine (BrdU). The current study showed that rmGDF-5 can promote mouse EpSC migration in vitro and in vivo and that GDF-5 can trigger the migration of EpSCs via RhoA-MMP9 signalling.